1_'_' *' [B "' ..' N' "-"’." A e
L) i & L) b a'

Thesis Advisor: Michael J. Zyda

-

NAVAL POSTGRADUATE SCHOOL

e

[ILL AR @ ,
- . M ’ "

Monterey , California

-

DTIC

2, SEP 011988

o

THESIS

DISTRIBUTED COMPUTER COMMUNICATIONS
in SUPPORT of
REAL-TIME VISUAL SIMULATIONS
by

Theodore H. Barrow

June 1988

Approved for public release; distribution is unlimited

AL

e ¢

LA " A !"- - y =" e L g '-. "~ = » ", 2 = e ", y
N T R S NN w.‘-'-.'_-."*."."-.'_-s.'-.’-."' AT AT T AT AN, AN
- . [» -

889 1 027

»

"V',l'I".""i'l'.".!".‘."i'.l‘.l'.l‘I'.I‘v 0 Y00 IO Y o T R OO Y O IO O T Y =) ..',. 02t 007 0 Fa¥ et Ba ol oV fat a0 5 0 get gt gt javog iy

. J
[1)
. (A
' UNCLASSIFIED :0
SECURITY CLASSIFICATION OF THIS PAGE. W
+
A REPORT DOCUMENTATION PAGE i
B 4
: a. REPORT SECURITY CLASSIFiCATION 1b RESTRICTIVE MARKINGS Iy
i Unclassified "
: 2a. SECURITY CLASS/FCATION ALTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT !
i : . Iv
b DECLASSIFCATION DOWNGRADING SCHEDULE APproYed for ?ubllc'rglease, f
Distribution is unlimited. 2
N 1 PERFQRAMING CRGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) '
'l
L} "
¢ b
' 6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION 3
(If applicable) l
¥ Naval Postgraduate School Code 52 Naval Postgraduate School o
R 6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) N,
) 9
: Monterey, California 93943-5000 Monterey, California 93943-~5000 E
) .8
8a. NAME OF FUNDING . SPONSORING €5 OFFICE SYMIOL 9 PADCUREMENT 1InSTRUMENT DENT!ISICAT'ON NUMBER -
' ORGANIZATION (if applicable) e
X Y
P 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS t
PROGRAM PROJECT TASK WORK UNIT Y
D ELEMENT NO. NO. NO ACCESSION NO. S
'
N]
) 11, TITLE (Include Security Classification) N
~
K DISTRIBUTED COMPUTER COMMUNICATIONS in SUPPORT of REAL-TIME VISUAL SIMULATIONS .
12. PERSONAL AUTHOR(S) o
Theodore H. Barrow S
"1 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |1S PAGE COUNT i
Master's Thesis FROM T0 1988 June 179 o
¥)
16. SUPPLEMENTARY NOTATION -
N ‘ The views expressed in this thesis are those of the author and do not reflect the official >
policy or position of the Department of Defense or the U.S. Government ii
\ 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Ll
FIELD GROUP SUB-GROUP Distributed Computing; Computer Communications; Visual ;
¢ 1 Simulation; Transmission Control Protocol (TCP); Ethernet;- ;
\ | ~Computer Networks. {(.g) ¢ o
\ 13 ABSTRACT (Continue on reverse if necessary and (dentify by block number) ;
id - ®» Complex visual simulations can_strain the capability of a single workstation. A mix)
! of different workstations is often ﬁBxe_economical than the use of a large processor for »
such simulations. Methods of communicating between such workstations are needed that .
allow the developer to spend effort on the.simulation and not on communications. Simple
; protocols are developed to support both erS&cast and direct-connect communications 4
\ between workstations using TCP/IP on an Etherhet. Comparisons are made between broadcast !
y and direct connect protocols. ’ 3\,, A d
D : !
&~ '
.‘]
e‘ .
.
kY
Ny
* 20 DISTRIBUTION . AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
X SuciassisrenunumMiTED [SAME AS RPT (33 oTIC USERS Unclassified
Jla CIANID Or REsrUNSIBLE NUVILUAL 22b TELEPHONE (Include Area Code) | :2¢ OFFICE SYMBOL ~
' Professor Michael J. Zyda (408) 646-2305 Code 52Zk &-.
! DD FORM 1473, 3a mar 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE N
Allother editions are obsolete o U.S. Government Printing Office: 1966—606-24. ¥
i UNCLASSIFIED .

™ RSy

A T s W <o " NN ~"-.‘ AT "'\-.‘” \‘-". DL e N

S AT ALY)

e "

‘e g

e g'e, 9t p¢

Aauthor:

I T T T N G T X R JOOR T Y o oy S et A"

Approved for public release; distribution is unlimited.

DISTRIBUTED COMPUTER COMMUNICATIONS
in SUPPORT of
REAL-TIME VISUAL SIMULATIONS

by

Theodore H. Barrow
Major, United States Marine Corps
B.S.ChE, Stanford University, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL
June 1988

Theodore H. Barrow

Mﬂ@.

Mlchael Thesxs Advmor

ﬂ/l' (Co vinm

hn M. /Y urchak, Spcond Reader

Rt (> 6

Robert B, McGhee, Acting Chairman,

ent of Computer Science
/ (({ e ¢

,. J ames M. Frepgen,
; Actm/g/ f Information and Policy Sciences
/ g

~~~~~ FRa® mAR? A L PATANA TN S RS LR R LR EERYRY hY BF R
.H‘oil- llu s, lbol' Vel a0 %Y o. WL o. .o.l\.l'i. n "h" . ’.'{ = u:‘m R o, N

-’

a5 AN WL

-~

L R ARt

B A RN

)

O

LY

R AP LA
A ‘ \

S0

&

LN @

SERXAS



&

ABSTRACT

'I}? F i

zz Ok

. Complex visual simulations can strain the capability of a single workstation. A mix
of different workstations is often more economical than the use of a large processor for X
such simulations. Methods of communicating between such workstations are needed that

allow the developer to spend effort on the simulation and not on communications.

T ]
% .

Simple protocols are developed to support both broadcast and direct-connect

communications between workstations using TCP/IP on an Ethernet. Comparisons are

4@ KL AL,

made between broadcast and direct connect protocols.

. _»
wr

.
%

{:‘ T r U ."

Accession _lfor

—'ﬁmfg*"a’mi‘—‘g‘“ _‘
DTIC TAB o

Unannounced O %
Justification . — ; -y

o1 @
Distribution/ ‘ .
~L’éilabilit? Codes 3
‘Avall and/or | N
Dist \ Special ,: ]

Al

br,c

%v ;""
3 iy .

-

L4

L2
.{ ';*r'y"‘-‘t

({f {f{{.

¢

P T T R A TP N N L NG L Y
o0, TN R N LR R R A O A AN AU

-

=

o]

B T



PESRT IO LT LS L7 LW AP A Y T Y00 RO PO W OO M ALK TGO W) K TUWR W WR Q'O ] Il" CR KR OOy TR "t ' ~q 4’ ." '.. %° ..n [RUA ‘ . - yav §, .. "l’

:
w
Loy
TABLE OF CONTENTS ‘E i
o
I INTRODUCTION ....ooovooiieemeeeeseesssessesesssseeeesssseseeesaseseesssses s sees e sese s 1 .
A, PROBLEM ..oocooieeieonceeseoenseassmessssesiaes s sssess s ssssssssssssssss s ssssssssssessssssnns. 1 " o
L. APPLOBCR oot e seeessesese e ssees e essesmeesese e seserees 1 oy
2. Design CrIteria .......cccocieriieiritiiiiieiiirereieennieesieeene e saeesssaeseasesssesnn s 2 :.:.',:.:
B.  BACKGROUND ..ottt e enentsae st sreses s stestsse st seesne e saesesnene 3 Y
L. Visual SIMUlation .........ccccceeevevernirniineeirereeseeesisseessssssesseesessessessenes 3 :.;4
a. Vision and Information Presentation ..........cccccoeervvvvrerriecrvenennn. 3 NG
b, DefiNition ......ccooooiiiriiiiiiiciinirrnressesevrtteeeeieee e s e ee s eaeseenrecens 4 by ";
C.  EXaMPIES ...ttt 4 o
2.  Computer System ArchiteCture ..........cccccevmreerveenernrersenveesereseeruesrenens 5 .
3. COMMUIECALION .....cvovoviveeerivireeeeieieisisissrensresesenssesesenssssssassessesssssesenas 6 ‘ J.
C.  ORGANIZATION ....coumiemeememmneesesssesssssessessssessesassssssssesssssssssssosssnssssessssssns 7 )
Il EXISTING SYSTEM .....ooouviuereeeieernreeenseessessesossssssssesssssssessossesssssssssssssassosssssosanes 8 .':".;
A. INTRODUCTION ....coouvmveieearesseeseseseesessesssssessessnssassesseenessssess et essassseens 8 .
B.  HARDWARE .......oooiitrerienctnteeeaeen e e ceerestassssssss st ssnssnsesssesesaasanansessnnsens 8 o
L INEEWOIK .cvvvveereenmsesessenesesassanesssesnsecsesessessessssssssesssssmssenessssssesssssssseres 8 N
2. WOIKSEALIONS ....ccoovvveereeeriinireesirisnesenessssisnseesesessssssesssssssssssssesssssassnnens 10 ::* v
a.  Silicon Graphics, InC. IRIS ........ccccoeverieienreeerriieeeeeeeeereereeveaenens 10 R
B.  ISTAL oot ssma s sssnas s ssasn s 10 2. .
Co SUN/S0 covoreevereeessecensnesssossssssssssesss s sssssss s ssssss e 11 A
d. Symbolics 36XX ...c.ccerveuiriiieriieneninieeeree ettt saerans 11 -;‘{- ;
e. Texas Instruments Explorer .........cccoccoviiennimnnnnencencnnenenne, 12 ‘;‘-
3. Digital Equipment Corporation VAX 11/785 ......cccooeveevnveereereinnene. 12 ' : ‘
4.  ISIV MINICOMPULETS ....cccoveieimirreerreerereenseessssessssessassessneessssanssasssssasans 13 paey,
C. SOFTWARE ....ccooiieiimieienenieieteeereensstesesesssastestsssassasassessasansssasssnsnsssessenes 14 :E{. J
L. UNIX MACRINES ....coveureriirieietinietetriteeeetereie s seeree e ensseesenserensenssneneans 14 Z: )
B, A3BSD ottt 14 iy
B, SYSEM V et ettt 14 e
2. LiSP MACRINES ....oovveeeeoieeeeee e ees e es e es e eeee s ses e eee e e eees 14 ‘l
A GENETA ...ooiiiiiiiiiici e 14 f:“'
D EXPLOTET .ottt 14 t:.\:
D.  SUMMARY ..oooroueeeereeeeseeseessessseeeseesssassssessss s ssessses s eseesesseesesesensessnenens 15 “3‘ A
III. PROTOCOLS .....ovvruiermmeeemesanreesessseesessssns st ssssse s essssa st st ssss s 16 N
A, INTRODUCTION ...ooovoooieveeeeseeeseeveoeoeeeeeseeseeseess s eneseeeseeseeesessssesessseesereone 16 f_"
B DIRECT CONNECTION ...ccocovtiuiiiiiiniireteeeensesseteenessesesassssesensesesevessnsnssenes 16 -}-;'
[.  High-Level Protocol ... e, 16 N
[ J
i 2
v o3
A
@
CAL
T N 2 T VR Tt N T, Wy T STttt v S o, W s N T R TR TR T S SNt s T s {::'




2. Supporting Protocols
C. BROADCAST
1. High-Level Protocol
2. Supporting Protocols
D. SUMMARY

IV. IMPLEMENTATIONS

A. INTRODUCTION
B. SYSTEM V UNIX
1. Silicon Graphics, Inc. IRIS 2400
Sockets
Semaphores
Shared Memory
Buffering
(1) Direct Connect
(2) Broadcast
2. Silicon Graphics, Inc. IRIS 3120
3. Silicon Graphics, Inc. IRIS 4D

E.

Ry o AT

a.

b.
c.
d

4.3BSD UNIX

LISP MACHINES
1. Texas Instruments Explorer I

2. Symbolics 36xx

a.
b.

2. Lisp Machines

a.
b.
c.

a.

% ..\ ..c.l W

Application Setup

Coding Practices
(1) Connection
(2) Program Use

(3) Disconnection

Connection

Program Use
Disconnection
C. BROADCAST
1.  Similarities With Direct Connect Protocol Use
2. Differences With Direct Connect Protocol Use

Application Setup

R Ale Ik =

o
‘s

»
)
1
1
8

&
2

Pl
&7

T

ﬁ; ' \. .\?e?;.ll$v? i )
K X))

S5

-rf ".

»



RIUTCORT DO RO IO U Y W T, LA AR AL N PAALEAEAS ARG EE LLCAY LE MASA EASSELVLL VAL SALGRA RATAL GICA £ LRt

-
T

>
b.  Coding PIactiCes ........cceovumiveecrurmrnrernssssseseseesenmnsessiessssssesssenens 55
’ D.  SUMMARY ...oooouiiiieiieitieeieeeeeesse et sses s st esas st es e semassesas st snesans 55 J
’ VI, PERFORMANCE .......ociiimemiiiiiiiiinieeeine st ent e sts s et 57
B A, INTRODUCTION ..ccourmrimmeemmeressanessessaeesssnesssssssesssssessssessesnssssssesessssessoncs 57 .
& B. DATA COLLECTION ....vvoroeeieeerssssoeseseemseessessssssssessssssesasssnsssesnseeesssens 57 v
C. DISCUSSION .....ooiiiiiiitienieeiieeereteserreesesasesseesssssasesssnsasassensssaesassesanssseasseen 59
) D.  SUMMARY ...ccvviiierirrerireeieiirresesiarssssrnsesserassesssssesesssssesssssssessonsesessssssssns 60
VII. CONCLUSIONS AND RECOMMENDATIONS .....ovoovveerrverenecernsessesessseesssnesssesenes 62
. A, LIMITATIONS ...ouoevvvemmiereessmmeesessecesssessssesssssnssssssnsossssssesessssssmsssssssssssessenes 62 A
s B. FUTURE RESEARCH AREAS ......c.ccoeetrinrsunismssssssssssssescsesasarsssssssssssassssens 63 "
b C. SUMMARY AND CONCLUSION .........ceeimmnreressssesssessaessoeseassmsssssesssssssennes 63 :
L APPENDIX A - IRIS MODULE DESCRIPTIONS ......orvssssseveuseessrerssssssssssssssssneeeeens 64 '
h Lo 0_SINGIE.C ... 64 )
\ a.  Calling ProtoCols ........ccccceveeriieeriinrvcrnienseenseesseessseereessrnesasssssssssesssesnses 64 3
A 1. number received .....................ccoiviniiiiniiiniiiicicncnee, 64 N
B, . 7€ad_CHATACIET ... vttt eeeese s 64 N
‘ i, 7ead_CRAracters ..............uiviviiiiinniininiicssseenseseienae 64
b 1V, read _floar ..............eoonvovvoietiiriece s 64 :
- V. T€AA_INLEGET ..........couoeevvircrrreterinccseeesise et sbessasssassi e 64 ':
. Vi.  7€CEIVEA_LYPE ...t ncsacseeesss s atasasassssons 65 h
Y Vil. Write_cRaracter ...............enievecinnniisscnsesesesensssssinn. 65 »
Vili. WFite_CHATACIETS ........cooovemeererincssecerresecestnssensasesesssssnsesanns 65 i
L X, WEite_flOQE ......unoveiiiniicectt it 65 v
\ Ko WML _IMIEGET .........oeeeinininirieiaeitrecee e ecarasssacnsssasssesasastsenas 65 Tl
‘ b. Code and DesCription ........cc..ccccceeriiererierseceseensessiseriueessessseessessseeennns 66 X
2. MPARLC .t ereeaesneseeeas 81 ]
¥ 2. Calling PIOtOCOLS ....cveveverecrereceeceientcesssseeessessesessessensssssssrssossssnssoes 81 bt
) i deletemachinepath ..............ceveovererereeseinenneersieseeessssesseenss 81 he
b . MACRINEPALR ... eece e e eeseessvsesses s s 81 b
ili. dynamicmachinepath ....................ccevveveveccenreecrereesieerrenreene. 81 b
iv.  dynamicmachinepaths ..................ccoccucuecuniccinecenncnescnenennna. 82 .
K, b.  Code and DeSCIIPHON ..........c.ccveviiiiuieieiererisiisiriese et ereasneseeseeereenanas 82 :
3. MEEVLC ot et e r s eaestne et 94
M 3. Calling ProtocCols .........ccocviiiiiiiiiiiiececiicecr ettt 94 "
* b. Code and DeSCription ...........cccoceeeeveinerinneecennrs et sreesee e eeesresen e, 94
R A, TECOIVE.C ..ottt ettt st et sa bt es et st ee et 103 :-
) A, Calling ProtOCOLS ..ocooveeviiiiniciiieece et ettt 103 o
' b. Code and DeSCIPtion ...........cccccceviniiiiiiiiieenencrenceneaneeseereeseeseeannn. 103 ;
" 5. SEMAPROIE.C ..oooviiiiiiiiiii et 107 »
; vi y :
I .
; W
)

M 1% A% T T TR TR R TS

GO A §

o

L X W'y K R TR Y LR R R Y R M YW LTS I I " -'
B S e e N N A A X 1 AN O e I SN )

A A" A% T % 0% ] ™ "™
‘*'& X 3




1'w~|*‘v‘v'|‘l‘|'i'|1'1" 5% 0% 8% $% 8 LT PV LN S T RO SO R RO IO RN YO N R VX 00" 120 0t 020 $2% fa® 8a® 02" Bn’ Ga® ol Ba¥ Sa¥ Ba? bot &

a.  Calling ProtocCols .........ccovceeriiiriiiiiniienecie et 107
b. Code and DeSCTIPtion ......ccccccceciimiimiireriiennireirie e 107
6. SEMA.C ..ooiiiiiiii e e 109
a.  Calling ProtoCOLS ....coouieiciriiiiriieieiir et e et 109
b. Code and DesCription .............ccccevuiriivicrninniienieiiiciene e 109
7. shared.h ... e 113
a.  Calling ProtoCols ........cccoveriicniinriienrenneenneicsneesecssrnsecessesseessesnseennes 113
b. Code and DeSCIIPtion .........cccccovviiriiirneiieiiencecrectesecnsee st creeseee e 114
8. SHAFESEZ.C ....ccoociiiiiiiii e e 116
a.  Calling PrOtOCOLS ....ccoooiieiricreeiiiiniieeeeetreteeeeseee e crseneeeceaeeecesaneaeeas 116
b. Code and DeSCHPLION ........ccocceiiiiieniieererreieerserenceiereeeeneeeserserieenans 116
Q. SUPPOTL.C oottt et et e et e ee oo s s an e s naae e ene 121
a.  Calling Protocols ......c..occiiiiiiiiiiinirccreiee e 121
i receiver_has _data ...t 121
L. Sender IS-free ............cccovivviiviiiniiiiiiiiiiiii s 121
b. Code and Description .........c..ccceveiiiieiciiiiniiiice et e 122
APPENDIX B - TI EXPLORER MODULE DESCRIPTIONS ......cccccooveeuimnniensueisuninnnenns 133
1. Calling ProtocCols ........ccocimrioiiir i rccees e smtne s re e ssrvsene s sran e enne 133
Q. IFIS coviicien et et ee et e e st ae s e s s as e s aae s aaesesbe e nne 133
D SEATE-ITES oottt et sb e e sr s sr e sae s e 133
. Co ZEI-ITES wooeiiiiiiiiitcire sttt sttt see e ee et et eeesmae s st st e neenaeset st ennesnnns 133
Ao PUB-ITES oot et e s 133
€. SIOD-ITIS viiriiiereiieiiiictitiitte sttt sneessstessaeesssesssnseesasssnsenasnsnessaesensesanns 133
£, FOUSE-ITIS cconiniiiiiiiiiiiii ittt st s b s s 133
2. Code and DesCription ............ccceiiiiiieiniiniiitenieecre e ensereneeesresereseseeeaecones 134
APPENDIX C - SYMBOLICS MODULE DESCRIPTIONS ........cooceriteneenriernesseeseeee 137
1. Calling Protocols ........ccceeeieeiiceiiiiiiiiiecrncecerneceeene e e seas e eesraeseneseas 137
A, SELECI-ROSE ...ttt 137
Do SIQIE-ITES oo e e e e 137
€. ZOI-IFLS oiiiieiiiiiiieiti ettt et et s bt e e bt et 137
Ao PUL-ITES (o e e 137
€. SIOP-IFIS eoiiiiiiiiiie ittt et e e 137
. FOUSE-IFIS oottt e e 137
2. Code and DesCriPtion .........cccocoiiiiiiiiiiiiieiiiiiee e e 138
APPENDIX D - TEST AND UTILITY PROGRAMS ........coooiniiiiiiriiiiiieeeeeeveiieveee e 141
Lo BPTOZLC ot e s b e 141
a.  Calling Protocols ........cccocceoiiiimiiiii e 141
b. Code and DesCription .............ccoiiiiiiiiiiiieiie e eee e 141
20 BPTOB2.C oo e bt ettt 145
vii

o mp Ax A e g i np A y - e Ly e s et an
B AV o 2 et P S O e A e P e S P e A T S T S BT N e N L

S EF
P 1-%
5.

DAL\ W
{ I
oAt

b

r
oSl

%
555

Y
oy,

rra @

‘_'c"‘} 2

«

r‘l}

,.“.
2720

r

N
P
& Yl
z :c"'('f

b Sud

¢ N N _B_8_®_>=
IS N |
s Y

‘_.'_'. ’;. o, e

¢



ORI VO TR S A R LT RO R RN WS W AR N RV N L X WL RU Y WO WL VO SA RN IR AR Yo W VR T -

Ry
A

a.  Calling Protocols .........ccccoooimiiiinicit e 145

b.  Code and Description ............ccccccovvivieiniiinininiini e 145

B POBLC et ettt ettt 149

a.  Calling Protocols .......cccccooiiiiiiiiirir e 149

b.  Code and DesCription ............ccociirieiint ettt eneeenn 149

. PROB2.C oottt et st s e st e e e 153

a.  Calling Protocols ........c.cccoiiiiieniiicie it e 153

b.  Code and DesCription ............cccceveveninnerreienreonirininnenestennennee e 153

5. PMSRAFE.C ... s 157

A Calling Protocols .......ccoccoviviiiiniinieiiicieenecenteestere st e seeeneseeie e 157

b.  Code and Description ............cocccererieneeneninneenicnieeiteecenee e e 157

6.  testshare.c ... e 160

a.  Calling Protocols .......ccccooiiiiiiiimiiieriecececee e ceeaesene s e eaaesene e 160

b. Code and Description ..........coueeceverieirenneniinciccie e creee e 160

LIST OF REFERENCES ........cooioiiiniiiirene sttt e e svesbe e sreie e s 163
INITIAL DISTRIBUTION LIST ...ooiiiiiiiiiiiiiieienreneste e eestaeste e st sna e 165

viii

Lt AP R T R " o n Lt St R P N A T A T A T At A e R
At A S I T R A S R GG R R Gt U RN A G A A A Tt Qe

A%

%

[ d

-
oy

s

-

-

.')2;" Yoy Vv :’J ".

[ g

'r{" *y

%y

L4

ool

X

3

=

-
S

SO YR

T
&l,ﬁ

P

e

% 5

o) -,;._.,;,;; e,

- =

-

o T

.‘Ili 'l

UL
y_s
MR L

."(

. '#\'N



> ixa8a® 1% 0nT 0t a0t 1040 et at S iat fab et Fat G2t gaV fut ol ot Pl o 40 T O PR Y RTOER V50 0,0 00 Bt g’ N O R

LIST OF TABLES
Table 2.1 IRIS WORKSTATION CONFIGURATIONS ....ccovvirrieiiicieeee e 10
Table 2.2  ISI AI WORKSTATION CONFIGURATIONS ...cocccoeeiivininiiirriniinrennnneen. 11
Table 2.3 SUN WORKSTATION CONFIGURATIONS ......ccocovveeeiernnnerereeeneveeneenns 11
Table 2.4 SYMBOLICS WORKSTATION CONFIGURATIONS .......cccoceverevinirennns 12
Table 2.5 EXPLORER WORKSTATION CONFIGURATIONS ....coocovovnivvereeincnnne 12
Table 2.6 VAX CONFIGURATIONS .....ccccoeviertierrerreenreenseesseessesssussnsesseensenssesnns 13
Table 2.7 ISIV DATABASE MACHINE CONFIGURATION ..........cccoovvvvevenrennne. 13
Table 3.1 DATA TYPES SUPPORTED ....ccocieiiiiiceieceiieineninserieneneseresseeseseseneses 16
Table 4.1 SOCKET SUPPORT FUNCTIONS .....cooiiiiieiiicececceeeenannsesnseeeresenenices 23
Table 4.2 SEMAPHORE SUPPORT FUNCTIONS .....oootiiiiireireereereneeene e eeennnens 24
Table 4.3 SHARED MEMORY MESSAGES ....ccoovtirieeieciciveerrceeesessseseneseneans 25
Table 4.4 SHARED MEMORY SUPPORT FUNCTIONS ...ccoovevreiviieieccneneierinnnecinns 26
Table 4.5 INTERNET ADDRESSING CLASSES ...oovtuttteierereereerrriieesiessenereesenes 35
Table 5.1 SERVER ERROR RESPONSES .....coooviiieiieiiiiiicriierserresnssnneernnreneeesesenes 42
Table 5.2 CLIENT ERROR RESPONSES ....ccccceeecrvrernrreerervrneersnreeosssesssrssessessane 44
Table 5.3 PATH CONNECTION ......oitieeiceietetscesssrsieeesesssetnseeecessossnnsesessssssns 45
Table 5.4 COMMUNICATION FUNCTIONS ...ocooiirieieureersnrrreecrererissnsesesssssseesnes 47
Table 5.5 MACHINEPATH PARAMETERS .....coioiiiiiriieenuneuenssenenrereresreressreneienes 56
Table 6.1 DIRECT CONNECT VERSUS BROADCAST STATISTICS .......coe...... 58
Table 6.2  APPLICATION NETWORK USE STATISTICS .....cooevvvureiirieeereeeeeennn. 58
ix

s

AR AR R P
s
hf)fi‘ x Fd 1

.« e
'

P

iy
‘e M

'
\. 4y Sy At

T

| e
. L
ool B
4, s

l‘l -
'y
'l'l
«
[N
- ;

<, \.,‘ N ’.-_‘ S .' LN .r W .- .- .- P P, .* o, .- .' .' .‘ .~ .' BN . N



R AT R R T N L L A T LS L LN R I LY TN v 4, W0 0 O O ) g 0V 0°0.0°0.0'0,0 8, * gatty "bQ*QO'O"O ‘..r UX A __ ,.‘ » ‘ '.....

o,
‘gﬁl
e
oo
b
LIST OF FIGURES A
ALY
N, ‘ »
Figure 2.1  Network Configuration .............cccociiininniniiniinnicnienncne e 9 u'..ui
Figure 3.1  Message FOIMAt ...........ccooeiviieiniiemmeceeeccncnene s essesesssesesasesssnass 17 N
Figure 4.1  Shared Memory Segment Data Assignment .............coceerverevevcnnnne. 25 ;-'C,. \
Figure 4.2  UNDX MemOTy ALIOCALION .....o.eueeeeveoeeresseeerreerersesssessseseressessesenens 27 B
Figure 4.3  IRIS 2400 Default Shared Memory Attachment ...............ccoevuneinae 28 -
Figure 4.4  Three-Machine Interconnection ...........ccoccieiiviiecnieinniiininnceicneennn. 31 :'.;3::
Figure 4.5  IRIS 4D Default Shared Memory Attachment ................c.ccecercerennne 34 E;;‘:_
Figure 4.6  Encapsulation of RIS AQAIESSES ..........ceeerreereeerrereereeeseeeesseeseseesseesanens 36 i
Figure 4.7  LiSp POrt ACQUISItION ........c..c.coovuemveeeuerereeseissesessenenseseseeseeassessesessenes 36 "o
Figure 4.8  Opening a Lisp Client Cornection .........c.ccooeecenueciiniecrnnnncninccinennenen. 37 ’ ,.":"
Figure 4.9  Sending a MESSAZE .........cceceverritrererreninrereneerersestanieensssssesassessesassennas 37 oo c.'
Figure 4.10 Genera 6 and 7 defmethod ................cccovvveioiniinennrecienineecscrieensenns 38 o
Figure 4.11 Generic Host AAdressing ...........c.cccoerrverrerierrenerenrecensessrneereeseesensenens 38 *"vi
Figure 5.1  Sample Application make File .........cccocoeceiorrermernreenineineeseeneineennenn. 41 -9
Figure 5.2  Nommal Server Response .........coccovvvrinercrncncineceneneseseeseseneennnas 42 _'-:f,‘s: :
Figure 5.3  Normal Client ReSPONSe ..........ccouvuriviniriiniiiieiinieircnnerccneseseceennnns 43 E_,E ]
Figure 54  Creation of MAchine StrUCIUTE ............c.eveevemeeeeueeeeeseeeseeseeeerensessneens 44 :::.‘:
Figure 5.5  SEIVEr CIEAtON ..........c.ccervemmieeveicermseeeseennssssssessssesssessecsesssnssnsssessesee 45 "o
Figure 5.6 Command Line Direction for Connection .............cccecevevueieereeeecennennns 46 :ff 3
Figure 5.7  Synchronous Write / Asynchronous Read ............ ccccccovevvevviennnennnn.e. 48 E‘_:-:_
Figure 5.8  Reciprocal Synchronous Read / Asynchronous Write ....................... 50 Z_i:j,
Figure 5.9  Connection TErMINAtion ...........ccccerereveererereriereresinneresesssrssesseseseseenns 51 VA
Figure 5.10 Loading LiSp Flavor .......cc.ccoceiviriniiriernnrinneennieeneiieniiesreenseresee e e 51 g
Figure 5.11 Lisp Connection MeSSage ...........ccccoereeveerererieremasienessereeiensssssseneonn, 51 o
Figure 5.12 Setting Port Numbers with defvar ............ccccccovevinmnvninicnecienncnnnn, 51 :‘,:: ‘
Figure 5.13  SPECifying SEIVEr il LISP «.e..cvrvrverererssessssssssseremmemseereserereeeressreeseeessos 51 E:
Figure 5.14 Specifying Server by Name in LiSp ........ccccooeeivrurrrenieeererrecerreennene, 52 o
Figure 5.15 Application Communication in LisSp .......ccccecceeinniiinvnnnincensnnninns 53 .T-.:S‘ y
Figure 5.16 Termination of Communications in Lisp .......c.cceccoevceienienicnicnninnns 54 é i
Figure 5.17 Normal Receiver RESPONSE ..........ccooreverieiriruiieiiitereeereeeseseeeeeneseeens 54 }f‘
Figure 5.18 Normal Broadcaster ReSPOnSse ...........ccccoiriirecieemeernrensneenecceneenn. 54 PN
&
hASG
e
e
AN
. -]
) 2y
N
- A
|
:'.:_K.
RS

A A g e T ST



il ol

R POR P XK ™ ¥

‘TR

et et

oAty

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to a number of people who
supported this work. To my advisor, Dr. Michael Zyda, who provided me with the
initial idea and direction to start the project, and then stepped back, allowing me the

freedom to learn through exploration.

To the following people who provided programs and subroutines which were

incorporated into the project:
- Captain Andy Nelson, USMC, for the original versions of the irisflavor Lisp

routines.

- Dr. Sehung Kwak, for the conversion of the Explorer Lisp routines to run on the
Symbolics as streams.

- Mr. Al Wong, as the guiding light behind the original netV routines, as well as for
working broadcast routines, without which, the broadcast routines would never have
functioned.

- Dr. Michael Zyda, for the original versions of the mpath, netV, receive,
semaphore, send, shareseg, and support routines.

I would like to personally thank my wife, Clare, for the tremendous amount of
patience and support provided during all phases of the project. By expertly running a
home with two children and shuffling her schedule around the times I absolutely had to

work, she provided me the time necessary to fully pursue this project and all others.

Xi

A AT P 1 S A A A St AT G A G R I G GRS R S A G

. P 1 " -l & . - - ka- " gn 9 ry o W g WD o
AN R0 M0 IR L LW L i 0 R AR RN X / A Ut 0 0 0 a 02 ts g W es Aot b’ G\ Ag® tg? b

R

.
WY W@ By

- w

B 3

SRR
P

L™ '??>- >

si'

EETA™ " ¥ a_¥

[

5T R4

AP e

L

(-
wou

-

s Xy

-

atalelw

A T i 2 o g
-

v



0 N I T RV T T e S IV S e T ST IR - T T e Y e W e M T N Y
G G, G Y S S R S R Yy Syl e e e N e e S

I. INTRODUCTION

The Graphics and Video Laboratory of the Department of Computer Science at the
Naval Postgraduate School permits the researcher to create three-dimensional visual
simulations from digital terrain data [Ref. 1]. Specialized graphics hardware allows the
display of such simulations in near-real time. The goal of a good part of the work in the
Iab is the creation of a movie-like view of movement over and on terrain, with
increasingly complex movement animation models. Such projects have strained the
equipment’s capabilities. One method of increasing available computing power is to
hamess multiple heterogeneous machines together in some distributed computing
organization. It requires communication between the various machines, as well as

carefully matching each machine’s capabilities to its assigned tasks.

A. PROBLEM

Rapid tumover of inexperienced students at the Naval Postgraduate School makes
the creation of complex simulations difficult to manage. The learning curve becomes
steeper as the lab’s capabilities increase. One of the areas of difficulty has been inter-
computer communications. So much time has been spent on designing, coding, and
debugging communication software, little has been left for the original research. ¥: set
out to provide an easy-to-use, yet powerful, set of tools to aid in the development of
multi-computer projects.

I.  Approach

A communication protocol can be optimized for large data transfers, or small

data transfers, or both. Efforts to optimize for both are both complex and difficult
[Refs. 2,3]. File transfer protocols such as FTP in the Defense Advanced Research

Project Agency (DARPA) Intemnet domain and uucp in the UNIX domain can be used for

& N o

oL R

.'."/l

-'..l, '.‘

F

PR 4
Jo]®

"5 R4
5’5”&'.

rd

r_a y
ole
'l 'l " "\

r e
[
/]

A AT Y B

[



- ag”

large data transfers. Their overhead! is high. This overhead cannot be tolerated in a

real-time problem?. Our visual simulation efforts rely on small data transfers to

communicate among machines. These small messages are typically commands and
changing status indicators. Transferring the entire “world view” is only a reasonable task
during initialization or reset. Hence, we designed our protocols for small messages.

2.  Design Criteria

The design criteria for developed protocols were simplicity, ease of use,
portability, anc efficiency. Rapid turmnover of inexperienced students at the Naval
Postgraduate School makes simplicity of paramount importance. Inevitably, changes
will be required and only a simple protocol is easily modified to take advantage of new
capabilities. Much the same argument, and generally good software design practice,
make ease of use only slightly less important. Almost all operating system-level aspects
are hidden from the application. The number of other machines to be connected to, a use
of dynamic memory allocation, and the names of the other machines are the only
concems for the application setting up a connection. The synchronization, or lack

thereof, in communication between machines is a design decision.

Portability dictated our use of TCP/IP, an integral part of the Defense Data
Network (DDN). Efficient use of processor power was considered more important than
efficient use of the network resources. The network is shared by the entire Computer

Science Department, but is not heavily loaded.

! The cost of creating a file and then spawning a process to send it is high. On the receiving end, there is the cost
of creating the file and then reading it. Even a zero-cost file transfer protocol will require all this overhead.

? Large data transfers, in real-time systems, will not be possible until 100 MByte/Sec networks are commonly
available.

TR T s A Ao o R RS R R S R AT AR Rt

Badal !

-

b

s
-

~ I"

)
N o

iy

I‘l,’.’ P 4 :{‘_l‘.‘l‘.

W R T W

LS

s

Y

- b e
a

L LA L LA

»
-
-

iy

S‘\rﬁ./'-:\

T

P

w_s_»
s

AT G

v
L
L~

A - N X T

Cog | s 22 AL ™

b Yo g

-

3

.
A

v
»

BRI }'
v

7



RN A

e

A

B. BACKGROUND

1.  Visual Simulation

a. Vision and Information Presentation
The eye has the largest bandwidth of any human sensory organ. Proper
use of this capability is a challenge to all scientists. Static graphs are used in most
disciplines to show the relationships between a limited number of variables. These two-
dimensional representations convey information more readily to human beings than

would a table of the underlying numbers. [Ref. 4: pp. 8-12]

Time, a common independent variable, is often one dimension on a graph.
The other dimension is a single dependent variable. To portray additional variables in
one presentation is a frequently occurring requirement. Various techniques such as
multiple colored lines, multiple icons, and perspective drawing are used. With each
technique, only a few additional variables are added before the graph becomes

incomprehensible.

Pictures, particularly those in color, have a dense information content.
Unless blind, we live in a world of pictures. Human beings can recognize many
differences between two similar pictures. One presentation portrays many different
variables. When a series of pictures are presented, the time variable is easily correlated
to the actual time of presentation. When a series of pictures is presented rapidly, the
experience approaches reality, partly explaining the success of moving pictures and

television.

Animation creates visual images with an explicit time dimension, in
addition to two or three spatial dimensions. Using actual time to portray the
experimental time variable allows at least one more dependent variable on the display.

Images can be as simple as a changing graph, or as complex as a feature-length cartoon.

N R A ”

53

N ‘.45?

L s .,
",S‘. L ')""r"\‘;'::v.'

1@ -

P
«
WA

-
-

0%
LA

»
‘I’.l



FANENRA AN At

..‘I"I‘.‘I.. ]

e U AN A N AN P % W LA WY S IO N WSO ON 4R g8 a8 Ty E a8 0 a Rt

s 9%

However, animation creates its effect with the playback of prerecorded scenes [Ref. 5).
It is not suitable for providing immediate feedback to a researcher.
b. Definition
Visual simulation is the creation, by computer, of a realistic, easily-
modified, moving image from the mathematical model of a phenomenon. Realism
implies high-resolution, color graphics. Movement implies adequate floating point
calculation capacity to recalculate the model and its graphical representation between

display refresh cycles. Easy modification implies a well-designed computer application.

Visual simulation allows a researcher to experiment easily with his
subject. Ideally, we display a realistic approximation of part of the world. The
experimenter then manipulates some part of this visual simulation and receives
immediate visual feedback. The rapidly refreshed display is one key to visual realism.
Such a display allows the direct manipulation of the visual simulation, making it easy
and intuitive to use [Ref. 6]. Ease of use allows the researcher to concentrate on the
research question, not the display methodology or the computer interface.

c. Examples

Recent visual simulation projects of the Graphics and Video Laboratory
include speed control of autonomous vehicles [Ref. 7], control of autonomous walking
machines [Ref. 8], rule-based control of autonomous underwater vehicles [Ref. 9],
interactive moving platforms [Ref. 10] and combat vehicle control [Ref. 11]. Each of
these projects exceeded the capacity of a single workstation. The speed control and
interactive moving platform projects, written entirely in C, used two Silicon Graphics,
Inc. IRIS workstations, allowing multiple simultaneous views. The other projects all
required a rule-based artificial intelligence component, best programmed in Lisp for ease
of modification. Running the Lisp subsystem on the IRIS workstation gave an

unacceptably low refresh rate and correspondingly poor realism [Ref. 12]. Placing the

4

Ay S N RN .- JE e o N _.f ‘.\;,;..- A CY R A .. AT AT A

L~

*

ry

»

i<,
=

21

X,

At

NN

- g
>

Py

-

SO LA YW

B LT By,

» ¥ ¥
)

o 7

W LAY
PR



o ”
Wars A

08" A aA  alAY ek &7,

N s B 5 . 2@ cme_~ catbat »,
N W W LWL NG WU T e W AU TOCOOO KN 4 et ¥ UVLN u

Lisp subsystem on another machine improved the refresh rate of the IRIS workstation
used for the graphics display.

2.  Computer System Architecture

Computer systems can have a distributed or a non-distributed architecture.
Distributed architectures have only one characteristic in common, more than one
processor used to accomplish the task. Beyond this, many different approaches have
been tried [Ref. 13]. Identical processors give a homogeneous architecture. Different
processors give a heterogeneous architecture. Either distributed architecture may
incorporate shared memory or it may not. The separate processors can be closely or
loosely coupled. Communication between processors can be via shared memory,
common bus, or some form of communications network. Communication via some
combination of the above, such as a file server on a local area network, is also
common [Ref. 3]. In the Computer Science Department at the Naval Postgraduate
School, a heterogeneous mix of stand-alone workstations, file server supported

workstation clusters, and minicomputers communicates via Ethemet.

Programming distributed architectures has inspired creativity. The
fundamental problems with distributed programming are the communications between
processes and the temporal interaction of the processes. Communicating sequential
processes [Ref. 14], distributed processes [Ref. 15], and remote procedure calls
[Refs. 2, 16] have all been proposed as primitives to hide message passing from the
programmer. Remote procedure calls [Refs.2,3] and communicating sequential
processes [Ref. 17] have been implemented. However, even today, none of these is
generally available as a standard mechanism across varied architectures. We have
created simpler (but less general) communication routines for use among heterogeneous,

distributed, standalone computers.

Ld

C MOA A ST RIS S S RE R VT SIS i Sk S il S i i s St AL e A B i St SO S S D WA IRy
I 00 0 o000 2 W MO ) Ep a2y ¥ - . a2 alan "

-
r J
-

i
il

L]
~
.

> Y )
v"ﬁﬁbﬂw

2

'

'

‘.l.'{t'
L5

X

AT A,
Z <

N
PR AT

-P.

7
2

..??

FARY
>

RS
At

“ »
e ® WS

K

* N
.);z

n'-nl-\, N
Pt
A NN



Vot 0p 420 1a? 0g® Wt 1a¥ Lu¥ ¢,

R ek

R 104", 0% BV * 0% ab fat $at g2t Ra¥ ol dct fan heb pa a0 0, R TR R " R IR X T
- - o - ¥

Complex projects can require the resources of more than one computer.
Graphics portions are best handled by the specialized hardware of a graphics workstation,

such as a Silicon Graphics, Inc. IRIS. Artificial intelligence portions are best handled by

a Lisp machine, such as 2 Symbolics” or a Texas Instruments Explorer’*. Database

requests can be made to a machine with appropriate database software. A general

purpose computer, such as the Digital Equipment Corporation VAX""", can be used for
additional processing power, file storage, or other administrative support. Providing easy
access across such a mix of heterogeneous computers is a large task [Ref. 3]. The simple
mechanism described in this work gives communication access between cooperating
processes running on diverse hardware. It leaves temporal design to the application
developer, while providing the tools for synchronous and asynchronous interaction.
3. Communication

Communications between computers cooperating on a task can be one-to-one,

many-to-one, or one-to-many. It can be synchronous or asynchronous. Any, or all, of

these can be required for one visual simulation.

One-to-one, or direct connect, communications puts the lowest load on the
network when there are few messages to be sent. A single virtual channel between the
two processes is required. Each communication between any two processes comprises
one message. All messages are known to be intended for the receiving process. These
messages can be sent synchronously or asynchronously. Direct connect communication

requires one action by the sender and one by the receiver. With more processors,

* Symbolics is a trademark of Symbolics, Incorporated.
" Exploter is a trademark of Texas Instruments Incorporated.

VAX is a registered trademark of Digital Equipment Corporation

1

-f;':.--é_'

e .j ( .r_:.n .~ P .-‘ .(..'-, . S v'.- " ".-'.P et "‘ ".r W WA on "} iy '..- TS B gt A NGRS AN

o

PEL

eru @

BaSy

=t
‘A

2z

Sy

oA
fa

NA 4

,v..
| L
Pt o r

""‘l.
S A

>



KAV LI UM TN W U 0 LIS AT WM LM MM TCW Yk N Yo o W S R P A P X NN I SRR A Bt atet " At atit JU0* oAt et aiatate it afate

AW AN A

potential virtual channels grow in number geometrically. For a fully connected network,
the virtual channels required can exceed capacity. The potential messages required also

grow geometrically in number.

One-to-many, or broadcast, communications puts the lowest load on the
sending process. A message is sent to all other processes that are connected to it. It
requires one action by the sender, and two actions by each receiver (the reception and a
decision on whether the message is intended for that receiver). It also places one to n
messages on the network (depending on how the network and the broadcast protocols are
designed). It is primarily used in an asynchronous mode, although synchronous protocols

could be designed.

Many-to-one communications puts the highest load on the receiving process. It
requires two actions by the receiver on every message that is sent by any connected
process. It is also a primarily asynchronous method. The receiver portion of a process
sees many-to-one whenever broadcast protocols are the only ones used in a visual/

simulation.

C. ORGANIZATION

The previous sections of this chapter provide background on visual simulation,
distributed architectures, and communication paradigms. Chapter II describes the
hardware and software environment in the Computer Science Department at the Naval
Postgraduate School. The protocols developed are discussed in Chapter III. Chapter IV
describes the implementation of the protocols. Chapter V covers the use of these
protocols. The performance of the protocols is detailed in Chapter VI. Chapter VII
concludes with a discussion of limitations, future extensions and research topics, and
summarizes the research conducted. Listings of the program source code for each of the

hardware systems are included as Appendices.

RO NN e R R AT 8N T L A A N S A R R R A NN A S A LSRN S,
N0 e M A W e X0 MO 0 WO D o X urta s N D A e 20l A ) o o

!

o, W W

>

-* of ¥ £ i
@ LA
’ -

-

.
A

)

\
)

AX]

‘ ‘|.|.

‘-!‘
1
o

s

a
AR
I a



- I
Tt e 5 5

- -y n Ty Ts TR K" TR P TR
i, f'n.f'\ P ..‘ Ly .' \ ‘el > ."1" .. N .‘ .‘-. ot Cata

- - - ~ ~ . ¥ ¥ N < - 0 ®, g L -
M M NN K T WL W v - h..‘ TR 14alp * d 4 "' u B}

. EXISTING SYSTEM

A. INTRODUCTION

The distributed architecture available in the Naval Postgraduate School Computer
Science Department Graphics and Video Laboratory is Ethemet-connected workstations
and minicomputers. The workstations include IRIS 2400, 3120, and 4D graphics,
Symbolics 36xx" and TI Explorer Lisp, ISI Al, and Sun-3s"". The minicomputers include
VAX 11/785 and an ISIV minicomputer complex providing database services. All

computers, except the Symbolics and TI, use some version of UNIX""" as the primary

operating system.

B. HARDWARE
1. Network
Ethemet connects all the computers in our lab. There is a backbone network
and subnetworks for certain groups of computers. Currently there are two subnetworks,
one for the ISIV minicomputers and one for the ISI AI workstations. Subnetworks are
planned for the IRIS workstations, the Sun Workstations™*", and the Symbolics and TI

workstations. Figure 2.1 illustrates the network configuration.

* Symbolics 3600, Symbolics 3640, Symbolics 3650, and Symbolics 3675 are trademarks of Symbolics, Inc.
** Sun-3 is a trademark of Sun Microsystems, Inc.

*** UNIX is a trademark of AT&T Bell Laboratories

Sun Workstation is a registered trademark of Sun Microsystems, Inc.

-

C oAt e T AT 4. T wmT oA
FAFAT NS

e

XX WK

) -

A X R N g

A TR R R

4




T 0 TR . " Ba atoGav facaba’
R AR TR TR A Y n” et ati A Y C Lt aii gty ot alis VR g¥e Lat o) o W My W N . - W 9 .i.(

| .:?

unixl vmsl e

q

t

) t
\1

irisl iris2 iris3 iris4

————— R 4
_-s0nsl sunsl10 Ce sunsig_ ﬁc

{ Sun File Server/Diskless Workstations K e

- e
~-. suns2 suns20 suns21 - )

1@ T

3

’

CRA

TR
kJ
#

ail ce ai7 ai8

e

r v
sl

.
(S

isivl cee isiv? isiv8

’

Is
0 *

“y '.‘l
L]

3,0 8

.

y
.

e CS Backbone Ethernet
CS Subnetwork

SIIL®
et

Figure 2.1 Network Configuration

- . !
. ~ 1 W 1 . a0 G AN e 1 Ny a1 v e ) -y My ‘*w‘.v.‘ .l")‘h \‘-'.“-" .‘:.(
"-‘J“.',Q ) O“u. X 8 9,089,894 KA .“l ot 5,458 5,450 9. , 9, %8, y V » "l "b » y N O b L .

. A A%, ") 0



All computers support TCP/IP protocols. The Symbolics Lisp machines also

use the CHAOS protocol to provide file server sc:- ces from sym! to the other Symbolics
machines. This logical local area network (LAN) uses the Ethemet backbone for its
messages. The Sun file servers also support their diskless nodes over the backbone
Ethemet.
2. Workstations
a. Silicon Graphics, Inc. IRIS
Table 2.1 shows the IRIS workstation configurations. All are connected
directly to the backbone Ethernet. The proprietary Geometry Engines in each of these
workstations allows three dimensional color graphics displays to be generated and
updated in real-time. The primary use of these machines is for color graphics.
b. ISIAI
Table 2.2 shows the ISI Al workstation configurations. Only ai8 is
connected directly to the backbone Ethemet. The other workstations are connected to it
in a subnetwork. These workstations are used primarily for artificial intelligence
projects. The ai8 machine provides, as well as a gateway to the backbone Ethemet, file
server support for the other workstations. Their high resolution black on white monitors,

although bitmapped, have rudimentary graphics capabilities.

Table 2.1 IRIS WORKSTATION CONFIGURATIONS

Model Memory Disk Bit Floating Screen
Nickname . Point .
No. (MBytes) | Capacity | Planes Accelerator Resolution
iris1 4D/70G 8 380MB 56 N/A 1280x1024
iris2 2400 Turbo 6 144MB 32 Y 1024x768
iris3 3120 4 144MB 32 N 1024x768
iris4 4D/70G 3 330MB 56 N/A 1280x1024

aadyiiiel
Al

“x
P

“n 1 "
By,




U
1 Ve

Table 2.2 ISI AI WORKSTATION CONFIGURATIONS

Nickname Model Memory Disk Bit Screen

No. (MBytes) | Capacity | Planes | Resolution
ail V8WS 4 101MB 2 1280x1024
ai2 V8WS 4 101MB 2 1280x1024
ai3 V8WS 4 101MB 2 1280x1024
ai4 V8WS 4 101MB 2 1280x1024
ai5 VWS 4 101MB 2 1280x1024
ai6 VWS 4 101MB 2 1280x1024
ai7 VWS 4 101MB 2 1280x1024
ai8 V16WS 4 403MB 2 1280x1024

c. Sun-3/50

Table 2.3 shows the Sun Workstation configurations. All are connected
directly to the backbone Ethernet. The black-on-white monitors of the Sun diskless
workstations are primarily used for administrative tasks at this time.

d. Symbolics 36xx
Table 2.4 shows the Symbolics workstation configurations. All are

connected directly to the backbone Ethernet. The Symbolics workstations are used for a

Table 2.3 SUN WORKSTATION CONFIGURATIONS

Nickname Model Memory Disk Bit Screen

No. (MBytes) | Capacity | Planes | Resolution
sunsl 3/180S 12 490MB 2 1280x1024
sunl0 3/50 4 N/A 2 1280x1024
sunll 3/50 4 N/A 2 1280x1024
sunl2 3/110 4 N/A 2 1280x1024
suni3 3/110 4 N/A 2 1280x1024
sunl4 3/60 4 N/A 2 1280x1024
sunl5s 3/60 4 N/A 2 1280x1024
sunl6 3/60LC 4 N/A 10 1280x1024
sunl7 3/50 4 N/A 2 1280x1024
sunl8 3/50 4 N/A 2 1280x1024
sunl9 3/50 4 N/A 2 1280x1024
suns2 3/180S 12 490MB 2 1280x1024
sun20 3/60LC 4 N/A 10 1280x1024
sun2| 3/60LC 4 N/A 10 1280x1024

11

. . P M A" - AR " T TR T A R TN T T T T R T T TS TR TR LT
l‘g‘.‘.lcl.l."i, » WY SN, A N AT RO L LNt o L ‘l .,t L& V 3 Bihe 000, V. 0% 0N, L

R 14

‘.-
[ Y

SOOGS®

_.‘ -.. ‘:'l‘.&".#4 . V\*I‘.

"2
Ayt Ay ;

iy

o X,

=®

-’
-

x,
5

P"’I
S A

2 'C

Qg

SN
Xl

@ 7

2

Vo

Pod

;‘
e

[
()

A W G S 5% -
© NS e 2



KallnZ N adhd vy

Table 2.4 SYMBOLICS WORKSTATION CONFIGURATIONS

. Model | Memory Disk Bit Screen
Nickname | o™ | (MBytes) | Capacity | Planes | ©°!°7 | Resolution
syml 3675 5 I1GB 24 Y 1280x1024
sym2 3640 1 180MB 1 N 1280x1024
sym3 3640 1 130MB 8 Y 1024x1024
sym4 3650 5 512MB 1 N 1280x1024

variety of research projects involving artificial intelligence. The sym! machine provides
file server support for the other Symbolics machines using the Chaos protocol and its one
GigaByte (unformatted) storage capacity. The color-capable systems are used to display
static information with color providing an easier human interface.
e. Texas Instruments Explorer

Table 2.5 shows the Explorer workstation configurations. All are
connected directly to the backbone Ethernet. The TI Explorers are also used for artificial
intelligence projects. They have the least graphical capabilities of any of the
workstations.

3. Digital Equipment Corporation VAX 11/785

Table 2.6 shows the two DEC" VAX 11/785 computer configurations. Both are
connected directly to the backbone Ethernet. Only the unix/ machine was included in

this project. The vms! machine may not be available in the future, so the effort to

Table 2.5 EXPLORER WORKSTATION CONFIGURATIONS

Nickname Model [ Memory Disk Bit Screen
No. (MBytes) | Capacity | Planes | Resolution
expl I 4 280MB 1 1024x808
exp2 I 8 420MB 1 1024x808
exp3 I 8 420MB 1 1024x808
exp4 I 2 140MB 1 1024x808

" DEC is a registered trademark of Digital Equipment Corporation

12

Rl Je '
-

e s

.'5‘?‘?'

g o

2

..{.,..,‘ :

y
4

L B F

!

F o i
o

A s

"j.ll.‘;‘.‘i %,‘bl'

y g .Il.ll-'

L

Ll d
" \

_'-’_ ‘/‘ .J.;( <

T,d®

Ay

o

G T

VA
1,

e Tl



R WS L W LN N VOO Y MO VLSOO O on O

‘4ta 8ty 05t

00,8 ot “Sa® Rt 120 tat 040 0

Table 2.6 VAX CONFIGURATIONS
. Modeli Memory Disk Operating
Nickname No. (MBytes) | Capacity System
unix 1 117785 24 1395MB UNIX
vms 1 11/785 8 1442MB VMS

‘et §at L) \J »
- < * A

develop appropriate code was deemed unnecessary. The unixI machine is nps-cs.arpa

on MILNET and is the sole extemnal access point to other machines connected locally via

Ethemet. It supports the various dial-up lines, as well as other administrative functions.

4.

ISIV minicomputers

The computers in Table 2.7 make up the ISTV minicomputer complex. Only

isiv8 is connected to the backbone Ethemet. The other machines are connected to isiv8

in an Ethernet subnetwork. The ISIV minicomputers provide a high performance, multi-

backend distributed database. Any of the high-resolution black on white monitors can be

used with any of the hosts on the subnetwork. The character displays can also be used on

any of the subnetwork hosts. The graphics capabilities of these machines are limited.

Table 2.7 ISIV DATABASE MACHINE CONFIGURATION

Nickname Model Memory Disk Bit Screen

No. (MBytes) | Capacity | Planes | Resolution
isivl V248 4 602MB N/A 80x24char
isiv2 V24WS 4 500MB 1280x1024
isiv3 V24WS 4 602MB 1280x1024
isiv4 V24WS 4 500MB 1280x1024
isiv5 V248 4 602MB N/A 80x24char
isivo V248 4 602MB N/A 80x24char
isiv’7 V24WS 4 602MB 1280x1024
isiv8 V24WS 4 459MB 1280x1024
isiv9 V24S 4 602MB N/A 80x24char

13

T Sy A o e A s Vi G e P O Y T T O T g v

Y Yab da® fat hat ("

------

N
P,
" f

s
S
K St e

oS

Pl

AL
- 55
&:‘.i’ Pl

T 3,81
) \{sf.ﬂ L J

Lo % A
Fa;

pt

I,‘:;',‘q e

w2

e
ey

.,
o
i
A

5

@

.

v e -
ey

l‘.‘; Ay

) ’
» 1_‘,

e
A

- N
Py



RAS AN

l.o ' ". Y L l.v s W A% A Q W

R R R o, Ve Wy N W LW N

C. SOFTWARE

1. UNIX Machines

Two versiors of UNIX are commonly used. The machines purporting to use

System V', also incorporate characteristics of 4.2BSD and 4.3BSD. The relevant
incorporation is the Berkeley socket mechanism.
a. 4.3BSD
A "pure” 4.3BSD system (4.3 BSD UNIX #11) exists only on unix!/. The
ISIV minicomputers use 4.2 BSD UNIX Release 3.07, with a multi-backend database
system installed [Refs. 18-20]. The ISI Al workstations use IS68K 4.3 BSD UNIX: 4.0D
#2.
b. System V
The IRIS 4D systems use UNIX System V-based version 4D1-2.2. The
IRIS 2400 and 3120 systems use UNIX System V-based version GL2-W3.6. Both have
extensive 4.3BSD extensions. The Sun-3 uses an almost System V version of 4.2BSD
UNIX. The currently installed release is 3.4.
2. Lisp Machines
a. Genera
The Symbolics Lisp Machines first used Genera 6.0 software. All
machines are now on Genera 7.1.
b. Explorer
The TI Explorer lisp machine first used Explorer version 1.0.2 software.

All machines are now on version 3.4 except exp/, which is still on version 3.2.

* UNIX System V is a trademark of AT&T Bell Laboratories

14

L BTN PR AT A

R N N Aan

T Ty W W e " -‘-.-!-. ----- » -.- N .r(‘- .. qfnw-‘_--.-'r - -
AL WAV BRI AY, Tyt oo oo SR AN RO R 0--..,

g

A X W - .
)\, [

e

Lol

hY

- - --‘t

I IFL® LIS

L b
500, B

Catm o

-
)
s

Ry, 2.

P |

oS

<l

-"-‘f. _-<- L

SENNI®

2% Ly

P
P d

C o

PR AN

-



>'.,'.. . . * 00 0% Gat Bad e ted 104 ...., QIRR > g e gta gra S LA dte VoW N NN, i A 2 4e 20

(AR,

-

D. SUMMARY

R A g

The configuration described above is constantly changing. Additional machines are ‘

Software releases are updated (especially 4.2BSD UNIX to 4.3BSD UNIX). The

fundamental needs for distributed computation in this heterogeneous environment

]

remain.

' acquired. Older machines receive hardware upgrades. The network is reconfigured. "

e ]
»

FTELL LT VS SN

T G AE AT

Ea, g

L

-

o

e AT

NP

(-

0

-

X X ¥_%

15

A vhd

. . - L T T T IR I Rt N P I
B o e R o T e AT P IV I B R RS R N AN A T Y S A

-

Lr ol

-

. -



[I. PROTOCOLS

A. INTRODUCTION

Our visual simulation efforts rely on small data transfers to communicate among
machines. These small messages are typically commands and changing status indicators.
Hence, we optimized our protocols for small messages. Overhead to optimally encode
and decode packets was deemed inappropriate. The design criteria for developed

protocols were simplicity, ease of use, portability, and efficiency.

B. DIRECT CONNECTION

The client/server paradigm is used for direct connection. The client requests
services from the server, so establishing communications is asymmetrical. Once
communications are established, however, the protocol used is completely symmetrical.
[Ref. 21:p. 17]

1. High-Level Protocol

The variety of data types supported is limited (see Table 3.1). Each message
contains exactly one instance of one type of data. All integer or float data is converted to

an ASCII character string before it is sent. It is converted back to the proper type after

Table 3.1 DATA TYPES SUPPORTED

Type (Ig;tgetsl; Elements | Code | Available
character 1 :rnf}l,e Ié i
integer 4 Zirnf}l]e ; ;
float 4 [ Zi:f}l,e g ;

..............

f_ ¥ »
¢ It

s

,_,\’-w .;- ‘

weer

"y

4
P

« v

L,

o

£,

)
3

/f'{.
2 ]

a)

s
‘l‘




reception. While the conversion is unnecessary when communicating between similar
architectures, it greatly simplifies the task of communicating between fundamentally
different architectures. Knowledge of the other machine’s architecture is not required.

The inherent portability of this solution outweighs the processing cost.

A message is created with three fields. The type field is a one-character field.
It contains the appropriate code from Table 3.1. The length field is a four-character field.
It contains an ASCII string from 0001 to 9999. This string gives the length of the data
field. The data field is a variable length field containing the ASCII representation of the

data element. Figure 3.1 illustrates these fields.

While C programmers are continuously concemed with data types, Lisp

programmers are not. The Lisp routines support arrays of characters, single integers, and

single floating point numbers. Each of these is an object. Objects, not types (as implied

in Table 3.1), are received and sent by lisp applications. The underlying protocol is the

same, the application interface is different’.

=, !

Position
2|1 3] 415 6 | 7| ..]n

el em

&("v

'i

A 4 I‘!',.

PR

Length Data

0o g < ~|—

F R AN

S vy
,

b
P

oy

Figure 3.1 Message Format

3 Chapter 5 discusses applications’ use.

T R N

. . o . omi ot N
P s R T a P TR A - ~

" e T L LW,




S O R O O T R O O O N O Y o e I R Y T Y T N o s T e N W T LV IV oV D U o oo e o S v

N
3
:'::
o 2.  Supporting Protocols
Ly
i Full-duplex stream sockets are used to provide sequenced, reliable connection
'y . . .
o between machines. The sockets are created in the DARPA Internet* domain. The
' Internet pseudo-protocol is used [Ref. 22]. No out-of-band capability was included. We
" could not envision a use for it, since our protocol is inherently asynchronous. If a strictly
.
$ synchronous protocol was used, out-of-band transmission might be necessary to interrupt
Pa .
0 for an urgent message. In an asynchronous protocol, however, encoding the next
) . . N
‘ message gives the same effect. Processing overhead for encoding is no greater than for
:'. continuous monitoring for an out-of-band message. With only a small volume of data
r“
L)
:':-l transfers expected, no urgent message waits very long.
'
" Two ports, each with its own stream socket, are used for each channel between
i .
N, machines. Although full-duplex, the stream sockets are used in a simplex mode. The
-
; separate sockets are used because two processes cannot be bound to the same socket at
¥ : .
the same time. Two separate UNIX processes then monitor the independent send and .
..‘ . . . I3
$ receive sockets. Blocking sockets are used, avoiding processing overhead for busy-
(o .. . . . . -
L waiting. While non-blocking sockets are available in 4.3BSD [Ref. 21: p. 25], they were
Do
B not explicitly available in 4.2BSD [Ref. 22]. Operating systems might include 4.2BSD
E,
Y . . .
. sockets rather than 4.3BSD versions and so the blocking socket mechanism was deemed
Y
A . . .
» more portable. Both TCP/IP and the C routines provide buffering.
o On the TI Explorer, sockets were also blocking®. Direct access was made to
1;, the TCP methods provided. Lisp streams are used for the Symbolics lisp routines. The
>,
)
N 4 This is the underlying mechanism of the Defense Data Network (DDN) and was chosen for its wide availability
: and applicability to Department of Defense problems.
I'
. * Version 1.0 of the Explorer TCP/IP software uses blocking sockets. Version 2.0 uses non-blocking sockets.
. There has been no update of this system's TI Explorer lisp routines to version 2.0. .
o
. 18
[
)
)
. W]
l\ N

N I s,




FPL WL W Cate a'd a%5 8% 4" 8 8’00 ¢ Tty 5.0 68", N n/ v} ol a2V $28. Ot Sl waln, d & XY on--.‘;
t
9.¢
]
gl
A

lisp stream mechanism isolates the code from the issues revolving around blocking 0':
versus non-blocking sockets. .’
st
"
C. BROADCAST Ny
- A broadcast message is sent to all machines on a local Ethernet. Those machines ":
A"t
" : 6 . . . R,
that are waiting for some broadcast message will probably” receive it. If a machine on a F
subnetwork is to get a broadcast message, an application must run on the gateway f
ACH
. . . \
machine that will rebroadcast on the subnetwork any messages received on the backbone iy
. . . »
Ethernet. Machines not expecting a broadcast message must nevertheless process it and 7
I
reject it as inappropriate. The extra load on all machines connected to the Ethemet :‘.:
iy
. . . . . . )
restricts broadcasting to infrequent occurences until most of the machines used in !
3.4
simulations’ are on a private subnetwork. Ny
“w
t
1. High-Level Protocol )
!
We expect users of the broadcast protocol to mix its use with the use of direct :;
connections. The same data types and messages are supported (see Table 3.1).
RN
2. Supporting Protocols ~
F‘\
. . ol
Full-duplex datagram sockets are used to provide connectionless broadcast e
capability. The sockets are created in the DARPA Intemet domain. As with our use of ~3
a)
{‘..
stream sockets for the direct connection protocol, we use these full-duplex datagram ™~
~
o,

. . . . »
sockets in a simplex mode. We use a sending socket for one-way sending of a broadcast o
message to all other machines on a single network or subnetwork. We use a receiving )
socket for one-way receiving from a specific broadcasting machine on the network or :

&
Y
R
8 Unlike the direct connect protocol, the broadcast protocol does NOT guarantee reception. Trying to provide .,
such a guarantee requires a feedback machanism so that the sender knows that the machines expected to receive the o
broadcast did so. This is difficult without resorting to a direct connection or flooding the network with messages. \$
N
" The IRIS machines and the Lisp machines are the ones principally used for visual simulation. : :
“I
r .
)
19 ‘

»

)

- o IR Y] VRS L) "R AT R LI ) ~
T e ettt e, e o S Ay i A R £ T A T T R A S R A N RN R T T X ol



subnetwork. Direct connection, with its use of guaranteed reliable stream sockets, is

used for any other communication, including return messages. [Ref. 21: pp. 32-34]

As in the direct connection protocol, independent UNIX processes are bound to

the sockets. Since broadcasting is a one-way activity, a sender or receiver only spawns

one® UNIX process.

D. SUMMARY

By building our high-level protocols on top of DARPA TCP/IP standards, we provide
the highest degree of portability possible today. By using full-duplex stream sockets and
datagram sockets in a simplex mode, we do not make full utilization of a socket’s
capabilities. However, this concemn is outweighed by the increased simplicity and
resultant maintainability of the code. The use of ASCII character strings for the messages

is simple and makes interconnection with diverse architectures straightforward.

* If broadcasting were used exclusively for complete connectivity, each of n machines would Spawn n processes.
If direct connection was used exclusively for complete connectivity, each of n machines would spawn 2n-2 processes.

- NI NI Y
N A

= &

AR S R

O N X

%

e

v

Al BN

x ’(

Ls

st

"’ l‘ L)

L]




DS X

%, y - ' A ’i‘.n.‘" L™ | \i-¢‘-r-‘_.l"n

TR T L T R N L Mo N R L S T T S W R R OO TR AR R R 3 O P B2 ¢ “Ba b 200 000 "3.8"

IV. IMPLEMENTATIONS

A. INTRODUCTION

The first connection was between the IRIS 2400-Turbo and TI Explorer. Then the
Symbolics Lisp machines were included. These routines have had extensive use
[Refs. 8,9,11]. The IRIS functions were updated for the IRIS 4D, coincidentally
providing Mex support on the older IRIS machines. Broadcast capability was added for

UNIX-based machines. A port to 4.3BSD UNIX (application calls unchanged) was begun.

B. SYSTEM V UNIX

All our System V UNIX-based systems include the socket mechanism first
introduced by 4.2BSD. Sockets are akey aspect of all implementations. We expect they
will become part of System V or its successors [Ref. 23]. The System V-unique
semaphore and shared memory interprocess communication (IPC) capabilities are also
used.

1. Silicon Graphics, Inc. IRIS 2400

a. Sockets
The socket was introduced in 4.2BSD as the preferred metaphor for IPC. It
was ‘easy and efficient to implement and the select mechanism could be used to
implement remote procedure calls, if desired [Ref. 23]. System V had no comparable

mechanism until version 3 was released with streams. The BSD sockets were included

by many vendors, Silicon Graphics, Inc. included®. While the use of sockets could be

® The System V version available on the RIS machines, at the start of the project, was version 2 and so streams
were not considered.

21

TS,

52

oA
H5 5 % 5 B e B

x

e

2 10,

lr
5

R IAAI
R
- ‘:‘,%...- -

»
o

e
@ s

-

ALE T,
"/,;-,': )
oty g E _r~’¢|

_,‘
Y
P ]

..... . - P —ym . L] - ! ¥, (
‘!(’,1 ‘P, f f f f"f IIN 5"1' =" nt 4" 4 " M F'} "l. -\‘Wl’ - \'\ A '



replaced with streams, device drivers would have to be written. The advantage of

streams is the ability to filter them between streamhead and the actual device driver.
These filters, however, reside in the kemel’s address space and have the kemel’s
permissions [Ref. 24]. In our environment, the potential performance increase is not as

important as the requirement for simplicity.
The system call for socket creation is socket. The system calls supporting

socket configuration are setsockopt, bind, connect, and accepr'® [Ref. 22]. To simplify
their use, these are all repackaged into four high level routines: connect server and
connect_client for direct connection, start_broadcast and broadcast_receive for
broadcast. These routines are encapsulated in netV.c. netV.c can be separately linked
with any application that needs to make a server/client connection using stream sockets

or a broadcasting connection using datagram sockets. Table 4.1 describes the four

routines.

Using the socket number!’, a process can transmit data through the socket.
In our system, sockets for inter-computer communication are created and used by the

send and receive processes exclusively. The file netV.c is not linked with the application

at all.

'° The accept system call is only relevant to stream sockets. The setsockopt, bind, and connect system calls are
used with both stream sockets and datagram sockets.

"' In the direct connect protocol, the server process reads from and writes to a remote socket number. The client
process reads from and writes to its local socket number. The reason for this is that a server could be connected to dif-
ferent clients (although not in our implementation) at different times. The client, meanwhile, is only going to connect
to the one server. In the Intemet domain, all necessary routing information, for either server or client, is contained in a
sockaddr_in structure and is accessed (transparently) via the socket number.

In the broadcast protocol, both the broadcaster and receiver(s) use their local socket number because they are
using connectionless datagram sockets. The routing information is also contained in a sockaddr_in structure.

22

S R e A T o Y e S M A R iy n.
A S » AL L, s (N4, "

g LR,

r r‘.r.-:‘.r L

Py

5 f . CAQ
S e

e dn 2 JR SR ET I
" 4l It LA

\J‘\ \}'\ ‘-'L\n“‘



g

4
d
4

-

o

»
)

3 ¢,

'\-‘}'O).V

A
X)

TR TR

g’

SN L 00 M TR SOLY Y WY U R A RO ORI R U LW U LS AN MW N O T KON W A o a0 B 0oF patr § 0 beft Fot fat et Sav et M |'
%
~
'
\d
Y
!

Table 4.1 SOCKET SUPPORT FUNCTIONS o

Function Description Use i
Creates socket. Binds that int connect_server( remote_client_name, port_number ) '
socket to remote c.liem ad- char remote_client_name{]; !
connect_server dress and port. Waits to ac- | 4 b0 number; o
cept the remote client con- . \

nection. Retums the socket remote_socket = connect_server( remote_client_name, 4
number for the remote client. port_number ) -4

. . {
Creates socket. Binds that int connect_client( remote_server_name, port_number ) _‘

socket to remote server ad- | charremote_server_namef]; =
connect_client dress and port. Connects | intport_number; s
with remote server. Retums | jocal socket = connect_client( remote_server_name, L
the local socket number. ]

port_number ) N it

Creates socket. Sets it to int start_broadcast( port_number ) o
. broadcast mode. Binds it to | int port_number; .
start_broadcast local address and specified local_socket = start_broadcast( port_number ) .
local port. Retums the local Y,
socket number. 'l‘-
. .

Creates socket. Binds it to int broadcast_receive( broadcaster_name, broadcaster_port )

local address and specified | charbroadcaster_name(]; .

broadcast_receive | port. Adds broadcaster ad- | int broadcaster_port; N
dress and port. Retums the local_socket = broadcast_receive( broadcaster_name, \"
local socket number. broadcaster_port ) 5
o
b. Semaphores .
. . . =
The semaphore mechanism was chosen as the least expensive, in both R
"
. . . . 3

space and time, for communication between processes. Signals could have been used, -

but implementation would have been more complex and less reliable. Signal-based

N

communication functions would also have been more difficult for the application o

programmer to use [Ref. 25:p. 10]. There are two semaphore ids maintained for each N
..

connection'?. One is used to communicate with the send process; one is used to T

communicate with the receive process. The two semaphores are both used to signal their -

process when it is safe to proceed. A send process is permitted to proceed only after the v
t

'Z Two semaphore ids are required for direct connect protocol connections since bot" a send and a receive pro- .- ‘
cess are spawned. Two semaphore ids are still created for broadcast protocol connections, even though only one pro- &
cess ig spawned. ::

A
h
23 \
"
)
)
~
A
R R S L WO SR LR LRI RS PR L LR PR RL PP s N P ARG,
.4"..0.».-...0..,.... ) L oY n 0 N 0 a N a A



T e W Y R W W N o W T 2 AW VWY U ™ W N

application has requested a write action!® on the channel. A receive process is permitted
to proceed only after the application has read all data from the shared memory buffer.
Neither the send nor the receive process is executing more than absolutely necessary,

assuring maximum availability of the local processor to the application.

The system calls supporting semaphores are semget, semop, and semct!.
To simplify their use, they are repackaged into three high level routines: semtran, P, and
V [Ref. 25:pp. 188-190]. These routines (and a support routine semcall) are
encapsulated in semaphore.c. It can be separately linked with any application that needs
semaphores. Table 4.2 describes the three routines.

c.  Shared Memory

A cost barrier to IPC in UNIX is the cost of copying data from one process
to the kemel and then from the kemel to another process. Using a shared memory
segment, as a buffer, minimizes this overhead. To further reduce overhead from system
calls, only a single segment is created. An application accesses the entire segment, while
a send or receive process accesses only its preassigned section. Figure 4.1 displays the

layout. The message area of each section is used for several purposes. It is formatted as

Table 4.2 SEMAPHORE SUPPORT FUNCTIONS

Function Description Use

Creates a scmaphore associ- | intsemtran(key )
semtran ated with a key. Retumns a int key;

semaphore id. sid = semtran( key );
id P( sid )
p ‘ VO
Acquire semaphore int sid:
void V(sid )
int sid;

\'% Release semaphore

" The data must also be valid in the shared memory buffer. All this is transparent to the application, which only
issues a write command.

24

'?

Y l"fr\' r " vq - - 'V\ L g VA T Ny Ny -.. S -.'-.,~ --,‘».. -. e NN N N N e et e L T e T e —..‘,.__._ ,“.“ oA
X NN A N ’ 2. ;

S S Sl

ot

-

P ETLILI® A,

< v

-

RELAS S,

et

A,
- »..,:..

gl X3
PR TG

& \*,'i *c

N dY

>

T

PETIER] wy
- .

2

oLl

b o -

W1

L4
)

-
Ly

s
5

) t.] L4

-
LA

55

-

R

.



vy w

P 3 SO0 ~ AR JEEH
R TR R IRV o

YRR A RAR T A LN bt {60 8 B BN g 0

XA

Receive Section

Message Data

ol1]2]3]1]

| n
Send Section
Message Data
0l1]2]3]1] | n
Shared Memory Segment
Receive Send Protocol
n n 2n || 2n 2n
0 + + + + +
3 4 7 8 19

where n = LARGESTREAD from shared.h

Figure 4.1

Shared Memory Segment Data Assignment

a long (4-byte) integer. Table 4.3 describes the meaning of three-state values placed in

- this area.
Table 4.3 SHARED MEMORY MESSAGES
Meaning Meaning Meaning
Value to to to
send receive Application
send: Data in shared memory
. . L has not yet been sent to other
. Data of length given is Application has not machine.
positive in shared memory, finished reading data - -
ready to be sent. from shared memory. receive: Valid data of length
given is in shared memory,
ready to be read.
Application has read send: Previous message has
data  from  shared been sent. Ready to send
Nothing ready to be memory. Message next message.
ZEero £ h hi
sent. fom other machine can receive: No valid data in
be read. up to LAR- shared memory.
GESTREAD bytes.
negative Signal to terminate. Signal to terminate. N/A

>

25

Wy \-(_\ ‘-"("\ ‘\-*'-}"-;l_\‘.‘_'_'.,\ ‘-q\.\ \}'v‘;""\. \ﬂ\' ’-Q,"-*‘- 'f.‘-"\ 'y-‘,_\),-y'ﬁ"\'.‘.\ "J‘?“‘ \.l,\'r"‘ \‘,,“gu
- > . n * B 8 . N .

g P L Ay - sy,
I X = x.."

TRvere

~ AT

(S ™ UEERAA A,

ff

e

-

WYY YN

A

T o B

ﬁ"lﬁﬁ\ '?{T{"T-

;j:_",q'; 2



O §u0 §at

NN W e ¥ T ¥ g W, Pt g N

4) "
e
U4
o
4
oA
. "
The system calls supporting shared memory are shmget, shmat, shmdt, and "
& !
shmctl [Ref. 25: pp. 192-198]. To simplify their use, they are repackaged into four high 2
’
level routines: sharedsegment, dynamicsharedsegment, detachsharedsegment, and ‘.;
L&
. . - N
deletesharedsegment. These routines (and a support routine attach_within_datasegment) :”‘
. ¢
. . . . . !
are encapsulated in shareseg.c. It can be separately linked with any application that h
needs shared memory. Table 4.4 describes the four routines. it
The implementation of shared memory on the IRIS 2400 and IRIS 3120 '.“_'.
was a surprise. A basic UNIX memory allocation scheme is shown in Figure 4.2. Each : '
process has its own text, data, and stack sections. Neither the relative locations of these ‘::Ej
. . . . . 0
sections nor the direction of growth for stack and data sections is specified for UNIX. ',
. . "
The shared memory segments are logically part of the data section [Ref. 26:p. 151]. ’ '
Table 44 SHARED MEMORY SUPPORT FUNCTIONS £
Function Description Use w
Creates (if not already in ex- char *sharedsegment( key, nbytes, shmid ) -:: h
istence) a sht.ued memory long key; {
segment associated with a long nbytes: -
key. Attaches application to | E yt ¥ .':
sharedsegment that shared memory segment. | Mt shmid; o~
Retums a shared memory segment = sharedsegment( key, nbytes, shmid ) -
segment address and id. “. 1
Does not permit subsequent D
dynamic memory allocation.
3
. . char *dynamicsharedsegment( nummachines, O
.Cteates (if not already in ex- key, nbytes, shmid, freespace ) M
istence) a shared memory . hines: .y
segment associated with a int nummachines; § t
. key. Attaches application to long key; ™
dynamicsharedsegment | that shared memory segment. | long nbytes: N
Retums a shared memory int *shmid: )
segment address and id. Per- . -
. . int freespace; e
mits  subsequent dynamic i o
memory allocation. segment = dynamicsharedsegment( num- >
machines, key, nbytes, shmid, freespace ) .4
detachshare dsegment Detach shared 'me‘mory seg- void detachsharedsegment( segment ) f:‘
ment from application char *segment; ]
D void deletesharedsegment( segment, shmid ) - :':
deletesharedsegment m::::’ shared memory seg- |y ar segment: )
int shmid; :.-:.
\::
]
¥
L}
oA
]
A R R A S A AR AL AT



X

.

)

.

¢,

. - L} ., L7 2, », - ‘ 4
8% 8% DYCEhntataty gt VsV N

o Ng® A et gV fat g%

*

-

:
-
oo

g
g SRS

i e

Stack

growth
!l

P
growth

Data

Code

Figure 4.2 UNIX Memory Allocation

LU I
3.
s

LY - A». .
& % ‘x{'r{

Y,

FE % VI -
SRR O0

b
(it Xy

KA AL

iy

'-‘v,“,‘l »
A

Actual implementation is left to the team porting UNIX to the machine. The Silicon
Graphics, Inc. implementation attaches a shared memory segment to the first available
valid!* address within the data section. However, the beginning of shared memory

delimits the size of all other sections [Ref _6: pp. 367-370]. Figure 4.3 illustrates this

SIS DL

Tals

.q_.
—,,-,‘i.f

x

LI
-
-..-“l-
¥

)
ok

o, r

'* Shared memory segments must begin on a page boundary. This allows easy table-driven access by multiple (%1
processes. On the [RIS 2400 and 3120 machines, the Motorola 68000 architecture is used. The pages are 8KBytes.

e A L AR A GG LA R

27

e o
S " L e

"ﬂ‘ R
D sl

e

[ o% 4
L ] Lol fSI‘.

v
P

At

Al
»

. .'~{':‘-'-'!\;‘.';* oy ',CJ' 3 i



R Gt A G L ) 6 B R Bl a1 1t SO U AL S ERR A G E A R LRGSR AS LS CANE AR AR LA CAC AR LENP AN S Sty
"l ‘
& .
...
o
)
¢ \l
1 \
I
' ,
) . -
) Unallocated
' Maximum ]
i
N Unallocated Data Unavailable .
h Available Section
s Address Memory ‘
? Memory ,
y »
oy
"
» Shared Mepory Segpept I
W Data Section Data Section .
) .
’ Code Section Code Section
/ .
ad t
Before After .
N q
\1
:; Figure 4.3 RIS 2400 Default Shared Memory Attachment \
h :: :
% ~ X
J. relationship. While no dynamic memory calls' are made, the default arrangement works
) fine. But when dynamic memory allocation—linked lists and makeobj() calls are AN
- f
Cal . . .
s examples—is needed, the technique fails. 1
7 To allow dynamic memory allocation, the shared memory segment must 3
o
be attached at an address beyond the greatest ever required for regular data. Dynamic
o
o . . . .
- allocation can then occur without reaching the shared memory segment. Attaching at an
q_: unknown address both within the data section and sufficiently beyond existing data to B
\ t
: . . . '
&~ permit dynamic data section growth, can be done at least two ways. First, the data ~
4 section can be expanded until it is as large as possible, then the shared memory segment
~ N o
2 t
N '* Dynamic memory allocation is made with system call brk or altemate sbrk. Library functions malloc, realloc, M
and calloc use brk and so also do dynamic memory allocation. ‘
i -4
P \i
]
~ ]
B> 28 t
e :
B/ X
"
@

v

:‘ x\‘\}\‘-.)ﬁ' AT T TS T P '-'vr\ \)-.’x{\-\\ﬂ-\-- e AT m-\¢'.{1,y~_\ LI AT AT NN Y R T N N S




- s ap o

A e T,

= a KW

-

PPl el

kv
D

e

v

A,

TS

\

ap 8"

’.:.- -‘..-{‘:,.:_-_':4\-_. —'..:'. -J-;J-‘;_-.:'- .“..;"‘-\‘.-_'IN".\‘:-‘"‘...‘-..‘.-'\:'. '-‘-'n Nr\-- -“‘-’ " ”\-4“_- -“,\',\- \. - -._ o, -\_ .

0020 48 Yok . .

can be attached at a valid location just inside this maximum value. While minimizing
application programmer effort, this technique requires many system calls to grow the
data section. It also has the fatal flaw of limiting the stack section, if the stack section
and data section grow into the same unallocated memory. Second, the application can be

required to prespecify the maximum amount of dynamic memory allocation it might use.

The solution adopted is adding a freespace parameter to the
sharedsegment function; and renaming it the dvnamicsharedsegment function. The
sharedsegment function was retained for backward compatibility. The freespace
parameter gives the caller the ability to specify the maximum additional memory
required for the application. A request for this additional space is made before the shared
memory segment is attached. After acquiring (and freeing) the additional space, the next
available address is determined and the shared memory segment is attached to the next
valid address. We have now established the shared memory segment beyond the

specified growth of the application’s data.

When multiple machines are connected together, there must be a separate
shared memory buffer for each channel. There is no way to connect a second shared
memory segment. The solution adopted is adding a nummachines parameter to the
dynamicsharedsegment function. The nummachines parameter requires the application
developer to specify, in advance, the maximum number of channels that can be created in
the application. The first dynamicsharedsegment call establishes a shared memory
segment big enough for nummachines maximum requested channels. Subsequent
dynamicsharedsegment calls return the same shared memory ia as the first; but return a
different address within the segment. Since the application does not directly access these

functions, there were no problems caused by this parameter list change.

29

R~

o> F"‘.\'J*'."- ~ \.\..“

) ol "l ¥ sall _"al *, 0 ~ . ~ .
N B U -Lvuu ‘a), ] ..».b» ‘ Y GV y:ﬂym:ﬂy‘ymj .

-

‘AN

AN S SN

TP A

3R R

»u ® ¥ P

7

« W v v ¥
WY

R =

s et



The shared memory functions are isolated from the application by the

machinepath, dynamicmachinepath, dynamicmachinepaths, and deletemachinepath

functions'®. For the direct connect protocol, each machinepath, dynamicmachinepath, or
dynamicmachinepaths call spawns both a send and a receive process. For the broadcast
protocol, these calls spawn only a send process (for the broadcaster) or a receive process
(for the receiver). In all cases, the spawned processes issue a sharedsegment call to
attach to the shared segment earlier created by the spawning function. A command line
parameter is passed providing the offset into the shared memory segment that the
spawned process is to use. Figure 4.4 illustrates a system with three machines and two
channels.
d. Buffering

(1) Direct Connect. When a receive process is quiescent, waiting for
the application to read from the shared memory buffer, anything sent to it is buffered by
TCP/IP. The buffering provides the reliable delivery promised by a stream socket. The
next read command will deliver up to LARGESTREAD bytes into the receive data area of

the shared memory buffer. Since the messages are variable length, there cannot be a
guarantee that only one message was read!’. Multiple messages might be in the shared
memory buffer. A partial message might be in the last bytes.

The shared memory buffer management is handled by the various

read functions'® provided. Each read, requested by the application, is satisfied from the

16 See Chapter 5, Sections A.1.b(1) and A.1.b(3) for more information on these functions.

"7 The idea to pad all messages to some arbitrary size was considered and rejected. Whatever size was chosen
would always be too small for some character array. If the maximum Ethernet packet size was chosen, an unnecessary
network dependence would be introduced. The cost of application buffer management is considered acceptable, espe-
cially since it is incurred only on reads.

" See Chapter 5, Section A.1.b(2) for more information on these functions

30

i

(&4

) .tl.. -..‘ ._‘ Dadl I

s
% L

4

s pp P

S < ', ;

Ly
x

2l T

o o A
. L v.’-

-

T

£ 82 8 a_m
Aty

N YT S
"’l{ ._P_l

2y

E)
-~

PAL AR Famil 4
! ‘s_‘.f" P

Let
L]




‘o.’t.»'n"“.-'.."!l' AT 7‘ -'- ‘-- l‘.l"‘ ' ." N o“ _‘ v - __ -_ 340 .02° e
shared memory buffer
unallocated T *  send port
memory E TTTTTTTT T Tr T | receive port
- | .......................
unallocated unallocated
Data memory memory
| Data Data
¥
Application il send receive
shared memory buffer
unallocated f’“""""""'"""—-"""'_""'f send port
1
memory i g T T T T ST e receive port
A o BRI R L
1 1
unallocated unallocated
Data memory memory
- Data Data
Application send receive
- m——— e ———

shared memory buffer

shared memory buffer

send port

(*escesassssasesnananses

; ~~' receive port
I SRt At 18 AP
unallocated :. --------------------- i T ...sfﬂ%fﬂl:}. ......
b e d e mmm—————- ] 1
! { ! -7  receive port
nemory ! : ! ! .. Treceive port
I ! 1 1
unallocated unallocated unallocated unallocated
Data memory memoTy memory Remory
Data Data Data Data
Application I send receive send receive
________________________ ——————————— _
@G Fthernet

Figure 4.4 Three-Machine Interconnection

.’~-- - -‘-1' "O'..-\\\.' -'- ~v~-‘ n"\-

31

T O e A

h % .. T8,

C A A -‘-\l"l'('*"‘-.‘¢‘J'~I'.ﬁ'-l‘..l‘xﬂ.' '\-'..v‘.-.

&.. \(_\ >
o - -

SN

Sy @

P e

-

) AP
X >

-
s

sNe .

X

X
re,

-
-2

® 2

s ’ -'_ v
1] 1 l" .' (]

PLEANYS S
1“

"

« ¥y
<«
'y ey
LI

g f.(
5 %
S

t 2L,
x,

4

L}
2 L

A Y
[

s 7;}? -
= -"

)
e

PR

WA N

1]
~ a
La

e

7,

~i10

.
- r")'

A

5

A S

.

{5
P

‘I

. -

e e ]
’

Ly



"u. »

U
¥
1
)

TR

.. f_-if.f -' f J‘ J‘ J'. ey ‘_q“ f‘_f-'-'.‘~' .‘,. _yv _-. '\— - n..l » ‘q_.- -V\-\-.‘ LS 'N \-\' ~ A "

(X R AN/

R R e o T U R R ATV R SR N0 N W YO YO T P ¥ 2 P N N ot o S R R RIS o M o

shared memory buffer. Remaining valid data is shifted into the low order positions of the
data area. The count of valid bytes, held in the message area, is decremented. The
shared memory buffer now appears as it would have, if it had only received the
remaining data and not the first message at all. As long as only entire messages are
received (one or more at a time), this works well. When the TCP/IP buffer has more data
than the data area can take at one time, however, the receive process deposits
LARGESTREAD bytes in the shared memory data area. It is highly unlikely that this will

be on a message boundary.

A socket read overwrites all data in the data area. A partial data
reception must be stored and concatenated with bytes from the next socket read to get a
complete message. The protocol area was introduced to retain the protocol
information '’ required to decipher the variable length messages. The count of already
received bytes of a message is held here between socket reads. A message’s protocol
information is stored here, too. Protocol information is built up until complete (covering
the possibility that the break is in the protocol information itself). It is then maintained
until the entire message is received and read by the application. The buffering works
with data areas as small as four bytes??.
(2) Broadcast. The datagram socket used by the broadcast protocol
preserves message boundaries. Each recvfrom call to a socket returns only one message.
This message must be no longer than LARGESTREAD bytes. The shared memory buffer

management routines are not needed.

1% See Chapter 3, Section B. 1 for a description of the protocol

® LARGESTREAD must be specified in multiples of four bytes. The smallest possible data area is therefore
four bytes.

32

L

YA AT

x

=gty

B e e TR Rl
Cxant 4 - o -

L Ll

- e -
-

LS

VAo bl nt BN AL et

PO T R T s d T A

LraT

LS
'y



TCP/IP keeps unread messages on a queue. This queue may not be in
sending sequence. If the queue buffer becomes full, subsequent messages are lost
[Ref. 21:p. 8-8]. The sending buffer can easily be filled if many messages are broadcast
in a short period of time. Each broadcast message must be processed by every host on
the Ethemet. Only then can the next be sent. No access for manipulation of the TCP/IP
sending buffer is provided because its size is normally specified during system generation
and is not easily manipulated by an application program.

2. Silicon Graphics, Inc. IRIS 3120

There are no required changes to the IRIS 2400-Turbo code. The Makefile

must be changed to remove the -Zf compile flag, since there is no floating point
accelerator board in this machine.

3. Silicon Graphics, Inc. IRIS 4D

The IRIS 4D required programming changes only to the shared memory
module, shareseg.c. The path name for user directories is also different. Changes were

necessary to the Makefile because the /usr/include directory structure changed.

The IRIS 4D is based on the MIPS RISC architecture. The UNIX
implementation was done differently than that for the Motorola 68020. Shared memory
segments are not attached to addresses within the data section, as illustrated in Figure
4.5. They are attached at a much higher address, yet accessing them does not result in a
segmentation violation. This is a more robust technique that obviates any manipulation
of attachment addresses. Multiple shared memory segments are easily attached, using
default system calls. The sharedsegment call suffices, even when dynamic memory
allocation is needed. To maintain backward compatibility for application code,
dynamicsharedsegment calls sharedsegment, ignoring the freespace parameter, when
compiled on an IRIS 4D, and calls attach_within_datasegment when compiled on an

older IRIS machine.



Unallocated Maximum Unallocated
Data
Available Section Available
Address

Memory Memory
Data Section Data Section
Code Section Code Section

Before After

Figure 4.5 IRIS 4D Default Shared Memory Attachment

C. 43BSD UNIX
The netV.c file functions properly on a 4.3BSD machine that is connected to only
one network. The start_broadcast function does not properly handle multiple networks.

The other functions work correctly, even when the machine is connected to multiple

networks.

All  other functions depend upon semaphores and shared memory for

communication between the spawned processes and the main application. Stream

sockets*! could be used to provide the IPC between these processes under 4.3BSD. The

! Unidirectional stream sockets are equivalent to pipes,

34

'}'I’I'*'.I’.'-.".““N.‘ o ~'¥l

’
Ly
"
)
W

ALEL

x

R0l
a v

A Tt T 4

x

s
I’;‘t‘ -

A

A

Py

2

".l“




three channels?? used will have to be multiplexed into one, but the implementation is

otherwise straightforward.

D. LiISP MACHINES

The communication code is a flavor to be mixed with the application [Ref. 11]. The
Explorer software is syntactically equivalent to Genera 6 on the Symbolics. With a
simple change in the sequence of method and flavor names, the Genera 7 code runs on
the TI Explorer. The older flavor, originally developed for the Explorer, is also presented
to illustrate working directly with TCP/IP instead of using a stream.

1. Texas Instruments Explorer I

This older flavor works with Release 1.0 of the Explorer TCP/IP software. It

will not work with Release 2.0 as the implementation was changed from blocking to

non-blocking [Ref. 27].

Messages to the flavors in the ip package are made together with messages to

the tcp flavors. Network-independent addressing is not used. Table 4.5 describes the

addressing schemes possible [Ref. 28: pp. 4-2—4-3]. Class C addressing is used by the

Computer Science Department. Figure 4.6 shows the simple encapsulation of the

addresses for irisl, iris2, and iris3. Extension to include other machines is easy.

Table 4.5 INTERNET ADDRESSING CLASSES

Class No. No.
Networks Hosts
A 128 | 16,777,216
B 16,384 65,536
C 2,097,152 256

22 These are the semaphore, the message areas of the shared memory buffer, and the data areas of the shared
memory buffer. The first is unidirectional from application to spawned process. The second is bidirectional and three
state (see Table 4.3).

-

AR GRS R AR S E R

YOI LA LN NS CSARLL TR LR LU RN LN CRNY

> ALY

u,




- e ok o

- e o m e

PR
‘an :

. oo

AI

(defvar *irisl-address* 3221866502)
(defvar *iris2-address* 3221866504)
(defvar *iris3-address* 3221866505)

(defvar *dest-address* nil) ¢ the tcp-ip or internet address
; look in network configuration

(defun iris (x)
(cond ((equal x 1) (setq *dest-address* *irisl-address*))
((equal! x 3) (setq *dest-address* *iris3-address*))
(t (setq *dest-address* *iris2-address*)) ) )

Figure 4.6 Encapsulation of /RIS Addresses

A port is acquired by using the :get-port method of the tcp-handler flavor.
Here, shown in Figure 4.7, we use the global instance, "'tcp-handler"'23 to create specific
instances of the Transmission Control Block (TCB) for each of the two ports. Only the
client side of the server/client paradigm has been implemented. The client is created by
using the :active mode argument to the :open method of the tcp-port flavor. Both the
sending and receiving ports are full duplex, but are only used in a simplex mode. Figure

4.8 shows the creation of the sending port [Ref. 28: pp. 4-12—4-18].

The three fields in a message are sent and received separately. Each field is
then treated as a separate object. Figure 4.9 illustrates sending a message. For all fields,

the urgent argument is specified as nil. The push argument is specified as nil until the

(defvar *tcp-handlerl* (send ip::*tcp-handler* :get-port))
(defvar *tcp-handler2* (send ip::*tcp-handler* :get-port))

Figure 4.7 Lisp Port Acquisition

2 The double : allows the tcp-handler to be found, since it was not created “exportable™ in the Ip package.

36

\
\
I N T e T N e O T O O I P P N D S I T S N S e R R N N NN N NN NN



T N R L I S R TR T TR TG L TRy TR TS TR S T SR L)
CnS N .|.< N, ~.|‘|\->- Y, .- d .-t -“-

(send talking-port :open

ractive i tcp will begin the procedure to establish
: connection (default vs :passive)
talking-port-number : port number of destination host

machine name or address if blank and

destination R
; in :passive mode local machine waits for
)
b

connection

30 ) set max seconds before read request times out
Figure 4.8 Opening a Lisp Client Connection
(progn
(send talking-port :send
typebuffer
1
nil
nil )

(if (= (length lengthbuffer) 4)
(send talking-port :send
lengthbuffer
4
nil
nil )
(progn
(loopfor *loopvariable* (length lengthbuffer) 4
(send talking-port :send "0" 1 nil nil) )
(send talking-port :send lengthbuffer (length lengthbuffer) nil nil) ) )
(send talking-port :send
buffer

l.{'.{-

o

buffer-length W

t e
nil ) ) 3

N
Figure 49 Sending a Message oy

o

N

iy

. . « . . . . .—

data buffer is sent, when it is specified as t. The entire message is thus sent as a unit to S
AN

the other machine. 1-;(
2. Symbolics 36xx Sy

®

Genera 7 syntactic conventions are followed. The principle difference with
Genera 6 conventions is in the definethod function. In Genera 6 (and the TI Explorer),

the method name follows the flavor name. In Genera 7, the method name precedes the

37

- S
o 'F'- “’ b. A" ..“. "" Sl .P



flavor name. Figure 4.10 shows the difference. It also shows the other main difference

with the earlier code, that streams are used. The use of streams improves portability and

eliminates the need for the :reuse-iris method?*. It may be slightly slower, but any

difference has been unnoticeable.

Another change was to remove the dependence on hard-coded addresses. The
method :init-destination-host was added to the conversation-with-iris flavor (see
Figure 4.11). By using the net:parse-host function, the application need only know the
name of another machine. As network tables are updated, no change to the application

code is necessary unless a different machine is desired.

(defmethod (conversation-with-iris :stop-iris)

)
(progn (send talking-port :close)
(send listening-port :close) ) )

Genera 6

(defmethod (:stop-iris conversation-with-iris)

)
(progn (send talking-stream :close)
(send listening-stream :close) ) )

Genera 7
Figure 4.10 Genera 6 and 7 defmethod

(defmethod (:init-destination-host conversation-with-iris)
(name-of-host)
(setf destination-host-object (net:parse-host name-of-host)) )

Figure 4.11 Generic Host Addressing

2 The :reuse-iris method is retained for backward compatibility.

L

‘l

2,

* s




R R T R S L S S Y o R T W N U R oW U O

: - W A 0 R S R T Bt ST
a0 e e T 0 T B T e i N T S T AN G Y b e et e it i

E. SUMMARY

For UNIX-based machines, generic routines are developed for semaphore use,
shared memory use, and socket use. The socket routines use both stream sockets and
datagram sockets in a simplex mode to provide directly connected client/servers and
unconnected broadcasting communications. IRIS 2400, 3120, and 4D systems are fully

supported. 4.3BSD systems are supported with mid-level socket calls only.

For Lisp machines, stream-based functions are available for direct connection as
clients only. These functions are available directly if using Genera 7 syntax and with

minor modification if using Genera 6 syntax.

39

A A ,‘ LU I AP R
L

Kl N 2

<)

——

e e L

“»

»
L% )

e W

'y

(('l

FEETE LI
> - 2

gacd

pre Lo

SSEE® 2,

»

b

3
Pl 4

vy v
R4

“w
e A
r )

g
-



A sat ¥ O A G AR A PR AN R At S A e A S LML A N LS A

V. USE BY APPLICATIONS

A. INTRODUCTION

The application using either direct connect or broadcast protocol is not concerned
with system-level implementation details. Almost all aspects of shared memory,
semaphore, and socket use are hidden. The number of other machines to be connected
to, the use of dynamic memory allocation, and the names of the other machines are all
that concern the application in setting up a connection. The synchronization, or lack
thereof, in communication between machines is a design decision, not a protocol

decision.

B. DIRECT CONNECT
A UNIX-based machine can be either a server, waiting for a client to call and
establish a connection, or the client. A Lisp machine is always a client.

1. UNIX-Based Machines

The functions provided for UNIX-based machines are all written in C. They
must be linked into the application program using them. Figure 5.1 is an example make
file for creation of an application program on an IRIS system.

There are two independent processes, send and receive, that are spawned to

create the sockets and monitor them. They are made separately with the makeﬁle25

contained in their subdirectory.

3 See Appendix A

40

o’

'\'\.'-‘h"\ A ) '.\- LN R - \. I‘ ' e )_ _‘- ’_. :\ vy A ‘). NG L) ~ & ‘,-‘. PN O ..

e, "
A Y]

Al Y T o T 2 A R N

Y

Ll oy

£,0,57,

v

oS

..

T

L
.

»

Pt
« s !
I SCIUN

s

AL LT
“y %y

r I

.._.
.‘l LAY

FL e

A4 K

2

552

A,

Py ¢

1w £

LALSASY

1

MR



"8.2"8,8'5.8" 9,8 %8 %20
STt RS Y

R LT R

_.la.'}_‘hai'?_a_ Vo NS RN Y

LA AR AJ . 49 Yof Vet tap Vol 0l oy a ol g 0ut e SR 0a ot gl ataR s ) a0 p¥a-@Va 4%

vy

‘e 00008

CFLAGS = -Zg -lm -g -p

SHARE

/work/barrow/share3/
MAIN = carsimu.c
OBJS = First group of .o files

OBJS1 Second group of .o files

OBJS2

Third group of .o files

OBJS3 = $(SHARE)io_single.o \
$(SHARE)mpath.o \
$(SHARE) semaphore .o \
$(SHARE)shareseg.o \
$ (SHARE) support.o

OBJS4 = Fifth group of .o files

carsimu: $(MAIN) $(OBJS) $(OBJSI1) $(OBJS2) $(OBJS3) $(OBJS4)

cc -o carsimu $(MAIN) $(OBJS) $(OBJS1) $(OBJS2) $(OBJS3) $(OBJS4) $(CFLAGS)

$(MAIN): const.h vars.h
$(OBJS): const.h vars.h
$(OBIS1): const.h objects.h
$(OBJS2): const.h

$(SHARE)mpath.o: $(SHARE)shared.h
cc -¢ -0 $(SHARE)mpath.o $(SHARE)mpath.c $(CFLAGS)

$(SHARE)support.o: $(SHARE)shared.h
cc -c -o $(SHARE)support.o $(SHARE)support.c $(CFLAGS)

$ (SHARE) semaphore.o:
cc -¢ -o $(SHARE)semaphore.o $(SHARE)semaphore.c $(CFLAGS)

$(SHARE)io_single.o: $(SHARE)shared.h
cc -c¢ -0 $(SHARE)io_single.o $(SHARE)io_single.c $(CFLAGS)

$(SHARE)sharecseg.o:
cc -c¢ -0 $(SHARE)shareseg.o $(SHARE)shareseg.c $(CFLAGS)

Figure 5.1 Sample Application make File

a.  Application Setup

The server process must be started first. The application can set up the

comumunications paths as part of initialization, or it can do so only in response to a

41

WL s

R v o i T

-lbsd

= s
X,
3 YN

i J Ny
-,

Lok u g A )
‘,"l 59Nl

57

L

2,

[ BLY

Ay S e

P SRNPS

g5 55
1{((«'

vEss
S

. A G
A "i':'i;-’( '{.

y;

Fd
A S

s"?‘

P

eres
L8
AN

A

@Y
v -

s
(4

A
5%

.




G
6
S
)
" .
. . . N
specific operator command. In either case, there will be two messages retumed to the v
4
terminal for each direct connection setup. Figure 5.2 illustrates a normal, single -
)
connection, response. Since the receive and send processes that provide the messages -
are independent, the two lines shown may be jumbled. A variety of errors can occur at 3
. . . . w.l
this point. Table 5.1 gives the most common error messages, their cause, and solution. ~
o

-

Server waiting to connect to name
Server waiting to connect to name

A'b

Figure 5.2 Normal Server Response N

\
o
)

Table 5.1 SERVER ERROR RESPONSES g

d
Message Cause Solution B,
Server couldn't open a local socket: Socket in use due to previ- Run ps. Use kill to ter- ‘f

ous run not terminating
with deletemachinepath

minate any recetve or send
processes still running

Server couldn’t bind address to local socket:

Socket in use due to previ-
ous run not terminating
with deletemachinepath

Run ps. Use kill to ter-
minate any receive or send
processes still running

shmget: Permission denied

The shared memory seg-
ment already exists, but is
owned by another uid

Change key in
machinepath call, recom-
pile, and rerun

shmget: Invalid argument

The shared memory seg-
ment already exists, but is
too small because the value
of LARGESTREAD has
been increased

Run rmshare and rerun ap-
plication

shmat: Permission denied

Someone ...se's send or re-
ceive process is being
spawned

Outdated software is being
used.

Check that proper path is
used in shared.h, for
application’s include of
shared.h, and in
application’s Makefile.
Correct and recompile.
Ensure that all modules are
the most current. If some
are  not, get updated
modules and recompile—
especially send and re-
cerve.

42

T L

2l L S G
- ol - W

e e AT
el 1

S5 ("’-

A

o

22 T

-

X,

-
L/

L o o L L Ca ]
A b M



- . - - - s L - - L] -~ o, LR ELAT B B St
T L A T

The client process must not attempt connection until after the server is
properly running (the messages in Figure 5.2 have been received). The application can
set up the communications paths as part of initialization, or it can do so only in response
to a specific operator command. When client communications setup is part of the
initialization, care must be taken to wait for a ready server before starting the client. In
either case, there will be two messages retumed to the terminal for each direct
connection setup. Figure 5.3 illustrates a normal, single connection, response. Since the
receive and send processes that provide the messages are independent, the two lines
shown may be jumbled. A variety of errors can occur at this point. Table 5.2 gives the
most common error messages, their cause, and solution.

b. Coding Practices

(1) Connection. Making a connection requires two acts. The first is to
set aside space for the data required. Figure 5.4 shows this code when local declaration
is used. The Machine structure can also be declared globally. The second is to request
the connection with a machinepath, dynamicmachinepath, or dynamicmachinepaths
call. Table 5.3 compares the three types of call, while Figure 5.5 gives a server example
for dynamicmachinepath. A description of the parameters used is in Appendix A,

Section 2.a.

For flexibility, there is often a requirement for command line

specification of the machine to be connected to. For ease of use, there is often a

Connection established with name
Counection established with name

Figure 5.3 Normal Client Response

43

B T R T T T R TR T IR Ur T S S I T R
D N s N A 4'-"\-.'*-'-'- e -‘-~~

g Na XAl 3 v Bl

- L
e ) -

e q

>

S s

<-<‘

Ea o

SO R PR

£
(4
P,

N -."s"’-\,}s,'; )

A v 3T _m_*
A
e . B

NN

TATE R
PO DR

{"(-'-'
LSLUAENEN

', .“'P

NN
P IIN

LAl 4

T
.

s 'i' 'f-v' --' -

E 2 4

KA

I s A
(%)

%

-y

NN U A L T
DR S R S S



Cea a0 O Tt et $al o0 Oah ay N TS A A R R R R, Sat.tet G R’ it 0Ya A% A 1% 8070 8" A" . T 020" 800 000 ga0 940 00 “gatiqt ) T A... .‘.;'5

<Al

ol

“*
\5
M4

o

o
Table 5.2 CLIENT ERROR RESPONSES ~ 3

L

: 15

Message Cause Solution a

Client couldn’t open a local socket: Socket in use due to previ- Run ps. Use kill 10 ter- ~
ous run not terminating minate any receive or send - ‘n)
with deletemachinepath processes still running ‘. Y
Client couldn’t connect to the remote server socket: The server has not success- Terminate client, restart \
fully started server, restart client when t g
server started 2

The port numbers used by Correct, recompile, and

client do not correspond to rerun ‘:
those of server i .
s
shmget: Permission denied The shared memory seg- Change key in & t
ment already exists, but is machinepath call, recom- _\‘
owned by another uid pile, and rerun Ly
shmget: Invalid argument The shared memory seg- Run rmshare and rerun ap- ®

ment already exists, but is plication
too small because the value
of LARGESTREAD has
been increased

shmat: Permission denied Someone else’s send or re- Check that proper path is
ceive process is being used in shared)r, for

spawned application’s include of

shared.h, and in

e O P

application’s Makefile.

-
Correct and recompile. L\
Outdated software is being | Ensure that all modules are aha

used. the most current. If some ®

-
are not, get up¢'1ated :\'
modules and recompile— e

especially send and re- i

ceive. ; -
)
4

®
o
#include "/work/barrow/share3/shared.h"” .:{
s
main(argc,argv) :,:
o™

/#*tt#t##“*###'ﬁ##‘**‘##!t#'***t!t'llﬂ‘#*‘#t**l‘**#tﬁ##*ttt“t ;
- g
LocalL DECLARATIONS Yoy
n
t**t*lt’ﬁ**t*t**#******t*ﬂl‘****ﬁ*ﬁ‘***ﬂl****#*!lt**t*"*ﬂ*t‘l*ﬂt/
N

Machine cardriver; /* structure for conmunications system */ :

F

. . . [ 4
Figure 5.4 Creation of Machine Structure PN
oY

A

N
NR
l\.‘ .

270

4
Ly
@
e
.\’..
.
i.--
A LT RS LR L AR AT P A A i et SR IS S R N L ST AL PO L P S g T Y T R T AT T A AT T e T AT T AT -'\-"
-'ﬂ W "‘" o '--"”‘ - ."‘.\-_ a8 \'I‘ -,""\.“."‘.'\ e '\'\ ""\". o} ‘\-\ "vo. '-‘i ‘\\ = .\'. J\’ _"' » \.\.'.'-' st -\n‘ - "-\'-\



Y] ——ey " o et a8 B LA R 1558 A n b 8 0qate gl e
WY 2 W T Ca M W TN N R R a et piavy et i alia® d 0 a0 Bab Y b 080 34 X 4

Table 5.3 PATH CONNECTION

Function Purpose
Creates a link between two machines
machinepath No subsequent dynamic memory allocation al-
lowed
. . Creates a link between two machines
dynamicmachinepath

Subsequent dynamic memory allocation allowed
Creates » link between two machines
Subsequent dynamic memory allocation allowed

Multiple calls provide multiple links to one or
more other machines

dynamicmachinepaths

main(argc,argv)

/#t*###t*t*#**t*#**‘*‘t*t*t***&*ltt*t#ﬂ!ﬂt*#tt“*“-****#*tt#!

SYSTEM INITIALIZATIONS

t#ﬁ**tt#*t***t#!**#****!#*******t**t#*tﬂ#tﬁ****#t**‘##*!***t!l/

/* Open up the net path to other machine (iris3 default) */
dynamicmachinepath(2,other_machine 4,5, "server" &cardriver,2000000);

Figure 5.5 Server Creation

requirement for a default specification. Figure 5.6 illustrates one way to accomplish this
for a client. This example does not require that the network alias be defined to the
system as it uses the complete address. The user, however, only enters the alias.

(2) Program Use. The simplest high-level communication paradigm is
reading from and writing to the other machine. It closely parallels handling files and

terminals in C. It was chosen for these reasons.

Twelve high-level functions are available. Four provide status
information, four write to other_machine, and four read from other_machine. Table 5.4

describes these functions. The parameters used by these calls are described in Appendix

A, Sections l.a and 9.a.

45

O

-

NN @ o

Ze

‘:&'ﬂ.&. »_a .‘l «

«

("
£t

VY Y,

'»

® 'y

N

Pl el okt o
"v"..

@ -
[ ]
-

L g
-]

@ LIS
I y

) .-

A

2240 LE
L]

”
e

5

.Y
/o

1
(S
1

Pad
-

h T )

-~

'.
L)
Ly

ol

.
hy




* 0a? e Ta¥ Sa¥ gat 0,000 0u0 gat. Iatala® - 1g® a® Hau- 4t ot dr¥ gt Set gt SV §2% 005 b Gav 0e¥ fa? ha0 §V pl lad ot g gat ot

- W W W

main(argc,argv)

int argc: /* argument count */
char *argv([]: /* pointers to the passed in arguments */

{

/tt‘t*t-!t#ttt'#““““‘*i“““‘#lt‘ttt#‘!#““.“t‘**t‘#*‘t

DATA DECLARATION

“‘“t*"“‘l‘#‘*t#t#v““.“*‘t!‘#‘t‘tttt#‘tt"““‘t.‘.“‘t!/

char other_machine(50]; /* name of other machine */

/‘ltttt'#.‘#!I“lll*t‘##l‘l.##.‘ttﬂltt‘l*tt“.ﬁ‘lt“““‘.‘t‘.‘ﬁt*t‘lﬁ#

SYSTEM INITIALIZATIONS

’ttt"t‘t.#mt#t‘l‘t#“t“t#‘i"t“.‘t##‘tttl‘.“tlt"tt.#t“./

/* pull out the string from the argument list */
if(arge > 2)
{
printf("NAV: incorrect argument count! wuse nav <alias>\n");
exit(l);
]
/* pull out the name of the other string, if it exists */
if( arge == 2 )
(
strcpy( other_machine, "npscs-" ):
strcat( other_machine, argvil] );
]
else
strcpy( other_machine, "npscs-iris2" );

/* Open up the net path to other machine (iris2 default) */
dynamicmachinepath(2,other_machine 5,4, "client" &car, 2000000);

Figure 5.6 Command Line Direction for Connection

There is a variety of ways to use these functions. Figure 5.7
illustrates a typical scenario. This code is from the display station of a two-workstation
driver simulation. The display station provides its status (that of the “world™) on each
pass through its graphical display loop. The control station must read that status on eﬁch
pass, to update the vehicle position on its track diagram. On each pass, the display
station checks to see if any commands have been received. This is an asynchronous

communication, as the display station continues with or without a control station

46

L d A As IO WY

PR L RSN

e gn e BV 4
e

x
A

LN
l-l‘

¢

T
-

Oy
:

LN

L L
'ﬂ"n “

5 %
ﬁﬁk}?f'

=

LSRR
PP Y

[N

o2y

T s '.".?. <
‘l“‘ .l r
4 -

N J M@ =)
W ILIREI IS




ORI AN ROV RA RO o 10,008 < R G - 0 YT A e 44 AR S ot Bt B Da A a0 8 Ra0 B o POV P it A WV v

PAS ol N H - ) S SR oth aNl N PR SR L A

command. The asynchronous reads are guarded by a receiver _has_data call that detects
arrival of a message. Other receiver_has_data calls are used to “busy wait” for the next
message. In practice, it has not been necessary to include any but the first “busy wait”
receiver_has_data call. TCP/IP buffers messages when they are not immediately read.
It then blocks them into the largest grouping possibie and delivers them when the next
read occurs. The LARGESTREAD defined constant in shared.h determines this
maximum grouping. The first message is read by receive. The socket is then ignored
until the application reads the data. During this time, the other messages have all been
sent and buffered by TCP/IP. There is a slight delay between the time the first message is
read and the block containing all the rest is read. Thus the necessity for the first “busy

142

wait” receiver_has_data call. The other “busy wait” receiver_has_data calls are simply

for robustness.

The “busy wait” sender is free call determines if something has
- happened to the other machine or Ethemnet. The first write will always succeed, as it goes

to a buffer. If there is a communications problem, TCP/IP will not accept it and the

Table 5.4 COMMUNICATION FUNCTIONS

Function Action
sender_is_free Retums TRUE if a message can be sent.
receiver_has_data Retums TRUE if a new message has been received.
received_type Retums a character indicating the type of the message. CHARACTER_TYPE,

INTEGER_TYPE, and FLOAT_TYPE are predefined CHARACTER_ARRAY_TYPE,
INTEGER_ARRAY_TYPE, and FLOAT_ARRAY_TYPE are predefined.

number_received Retums an integer indicating how many elements in message.
write_character
write_integer
write_float
write_characters
read_character
read_integer
read_float
read_characters

Send a single value of the type to other machine.

Move single value of named type from buffer to application program storage.

47

P TN P VR R S At R N Rt S G N AR L N (S S A SR TR AR LG NSRS SO
Lam I8 o B o N ) L ! . . L) .. o v N . . L B

A A SRR
AP

WL ¢
AR

S
%
= N

WS

by Jo B
LR T e o

by

>
"

LML
YL

~
.

AR

224

25
>.J

L, _f%

-

OV,
,
i

“w
-

55
o

W

LS ST A ¢
',{"(' 1" 1,"‘?"

_‘5‘4

L
Y

AL it

2R

I
/f:t’

e
K 4
s

. LK

.

Y
e

LA
.-‘.



>, '-. oy '. oy k.:,\;.;,\:_&','-"_\:,'.’ .

- " aave” * 0a® 4t gat gav i R ROy TR R .

main(argc,argv)

/tttt#!tt*‘#tt"*ttt#*##“*#‘ltt#**“*tt*ﬁ#**!t‘tt*#&t*ﬁ’t‘ttﬂ*

MAIN SIMULATION LOOP

t**#1'.#t*t"4"lﬁ"I"*tt‘##t####tQl#t#ttt#t#*“#“#t###‘*t#‘#ﬂlt**‘/

while(vehicle.command.condition != DONE)

{

/tt#tt###‘tt##t#ttt#t**t#‘#ttt##ll*t‘*t#t#*‘#tt##t##*#*.'tt‘ttt#

Get commands (if any) from navigator. Commands are all sent
or none are sent so no information is needed as to which value

is which.
AR AR A SN ERE SRR AT ISR MR RN IR RR AR RN AR AR SR RRR KR RIS REERRE NS [

if( receiver_has_data( &cardriver ) )

{
read_integer(&cardriver, &vehicie.command.condition);
while( !receiver_has_data( &cardriver ) ) /*printf("1")*/;
read_integer(&cardriver, &vehicle.command.brakepedal):
while( !'receiver_has_data( &cardriver ) ) /*printf("2")*/;
read_integer(&cardriver, &remote_mousex);
while( !'receiver_has_data( &cardriver ) ) /*printf("3")*/;
read_float (&cardriver, &cmdspeed);

/t#tt#t1"'ﬂlﬁﬂlt‘*1'*t*‘.‘1*!#Ql#tl!l###**!!*#*##ﬁ‘*t##t#**ﬁ#tt.#t#*tt

Report all status information to navigator every cycle.
AR R R AR AR AR R IR AR R AR AR AR E R AR R AR RN AR AR R R RN

write_float(&cardriver, &vehicle.state_vector[1l]);

while( !sender_is_free(&cardriver) ) printf("b"):
write_float(&cardriver, &vehicle.state_vector(2]);
write_float(&cardriver, &vehicle.state_vector[3]);
write_float(&cardriver, &vehicle.situation.distance_traveled);
write_integer(&cardriver, &vehicle.conmand.condition);
write_integer(&cardriver, &vehicle.conmand.brakepedal);
write_integer(&cardriver, &vehicle.situation.lightcolor);

) /* while loop */

} /* main */

Figure 5.7 Synchronous Write / Asynchronous Read

48

it

S

" d
-

(Y
rr

x{‘x

e T 9 T Jn 3

AR

W N
".

R .'ﬂ‘: ‘:?

qo e,
‘. < o %A N

AL h S

’PI}((:-.“:

'a.."“'v{'- -



e g dk a

YV YOV Y

(™
i)

" L
WS

w

PN A

sender_is_free call will retum FALSE. This often occurs when there is a delay by the
client in connecting to the server (the display station here). If there is a good connection,
TCP/IP will accept and buffer all input. No other “busy wait” calls are needed. The other
side of the communication is shown in Figure 5.8.

(3) Disconnection. Termination, with a deletemachinepath call for

each path opened, is mandatory. If not performed, the sockets (and shared memory

segment on System V UNIX machines) will not be returned to the system. Problems?®
may then occur on the next run. Figure 5.9 is an example termination when multiple
paths have been opened [Ref. 11].
2. Lisp Machines

All necessary functions are contained in a single file. This file must be loaded
before use. Figure 5.10 is an example. A Lisp machine is always a client and is started
second. Figure 5.11 illustrates the message returned with a successful connection.
Unsuccessful connections “hang” and return nothing.

a. Connection

The address of the server and the ports it is using must be specified.

Figure 5.12 shows the ports specified as part of the loaded file. When using the older TI
Explorer functions, the addresses are specified in the same way (see Figure 4.5) and then
the machine desired is requested by number?’ (shown in Figure 5.13). When using the
stream-based functions, the addresses are not specified by the user at all. The network
tables are accessed, by host name, through the select-host function provided (shown in

Figure 5.14). Once the instance of conversation-with-iris flavor has been completed

% See Tables 5.1 and 5.2

77 A throwback to connection only with different IRIS machines.

49

o A"

=y

)
P A

>
.!.

P

- N g

NI A AP

80

T T

T T e B N N A T Pt ¥, 110, B N T AT L R R



} /* if(anything_has_changed) *

) /* while */

y /* .main ./

Figure 5.8 Reciprocal Synchronous Read / Asynchronous Write

/

R T R R R T R A T R T IR TR T S v e YAXETR b ot 0" AR A afe gt et oV e gte v
\ )
rodd
L ’
Co
®
o~
'I
p';.-
o
main(argc,argv) I
s,
b {
.'.‘
while(condition != DONE) AN
{ )
/‘t.“*‘.l“‘“‘##t#*“#"*t‘ﬁ*#“*##t#ﬁ“*‘*t“‘ﬁ*“‘t‘##“"*# - I-
Receive all status information from car every cycle.
tﬁ"“'.##ﬁ"“""“'***t“l'.ﬁ"i‘tt““‘##."“‘..ﬁ“‘ﬁ“‘./ rage
\i
while( !receiver_has_data( &car ) ) ; o
read_float (&car, &cy); '_':
while( !receiver_has_data( &car ) ) ; o~
read_float (&car, &cx): :A:':
while( !receiver_has_data( &car ) ) ; °®
read_float (&car, &velocity); s
while( !'receiver_has_data( &car ) ) ; "
read_float (&car. &rdistance); 'f
while( !receiver_has_data( &car ) ) ;. p .l{
read_integer(&car, &condition); ..l:‘
while( !receiver_has_data( &car ) ) hd
read_integer(&car, &brakeposition); ;
while( !receiver_has_data( &car ) ) ; =
read_integer(&car, &lightcolor); i
[ %
ek
i
\-" §
b .l
AL T L e P ot 2!
Send conmands (if any) to car. Commands are all sent -
or none are sent so no information is needed as to which value e
is which. o
‘t'ﬁﬁ‘#tt#t*‘#t“““*'*"t“*‘t*‘t.‘t.*“‘.“.‘#“‘O*.‘l#‘##ﬁ/ ..J
4
if(anything_has_changed) ALY
l P
anything_has_changed = FALSE; B
write_inicye: ‘&cur, &condition); \‘:-.
while( !sender_is_free( &car ) ) printf("a") ; !
write_integer(&car, &brakeposition); :\F"
while( !sender_is_free( &car ) ) printf("b") ; .':\
write_integer(&car, &mousex): o
while( !sender_is_free( &car ) ) printf("c") ; Lk
write_float(&car, &cmdvelocity); o

2.

'b"l.l{
Py Y
z

R LR TR Ok A0 O Ny

s,

A

50

P L v

=

A % v
i)

@

“




deletemachinepath(&TI);

deletemachinepath(&SYM3):
deletemachinepath(&SYMI);
deletemachinepath(&SYM4);

exit():

Figure 5.9 Connection Termination

vi: this is the communication package
(load "irisflavor")

Figure 5.10 Loading Lisp Flavor

"A conversation with the iris machine has been established"

Figure 5.11 Lisp Connection Message

(defvar *irisl-portl* 1027) ; this is the send port
(defvar *irisl-port2* 1026) ; this is the receive port

Figure 5.12  Setting Port Numbers with defvar

get the network going
(iris 1)
(setq *battle* (make-instance ‘conversation-with-iris))
(if (y-or-n-p "start networking 7") (send *battle* :start-iris))

Figure 5.13 Specifying Server in Lisp

51

“p - P T T I T P T A e e T T
"WR ..“.'[‘ .. H"(‘ * O B e " * f.“_.-"l‘.'.-f.r -"’ .« Wy O W

4l 'l-. n.l.l OO WAV, Py

W

W LA
iy,

4

AT @
=

19 kv

1Q o ama s A
o s

s
Pk d

a_s
-

e

Wkl

s

i,
25

\jl

e
Ll "

‘e &

v

&4

WY,



-l g Yl

LR R N
{d

a\
0.,

i ven 2 P red Bt AR it A ACATANE et etk el aVA e el ath aiA it ath Akl alA alh Al alA b o BA A L AA
4 Ty ) AR TR Y . f LW Wl Ol Bl A - 3 d a LAl S Wl U L Sl S O T

(select-host iris2)

Figure 5.14 Specifying Server by Name in Lisp

with port numbers and host addresses, the connection is established with the method
:start-iris, see Figure 5.13.
b. Program Use
The method :get-iris returns with the object sent by one message. The
method (:put-iris object) sends the object as one message. Figure 5.15 illustrates both.
Note how methods are added to flavor conversation-with-iris to simplify the
application interface even further. [Ref. 11]
c. Disconnection
Disconnection is accomplished with the method :stop-iris, shown in

Figure 5.16.

C. BROADCAST

Only UNIX-based machines support our broadcast protocol at this time. It is a
unidirectional protocol, but nothing prevents the establishment of two unidirectional
channels in opposite directions. Using two broadcast channels to emulate a direct
connect channel, however, loads all other machines on the network by requiring every
other machine to process each message. It is also less reliable. Broadcasting is good for
sending status information to many other machines, as long as those machines can
tolerate missing reports.

1. Similarities With Direct Connect Protocol Use

Using the broadcast protocol is similar to using the direct connect protocol.

The same functions are used in the same way. Each connection must set aside space as

52

A
At " o A

ARG LAYy O A T I AW AT T TR TN R A T A
X AT AR IR Y 5

X A L A f' N AN A P S

-y

-

h]

AL

ARy

PR

't; .;

11 "57‘{"{:"'1 2

)

B

A

Ko

7

-]

S od @ (5

O

Vg

. X

s

T S8

;4®

4 [ ]
N X

t.il’ "y Iy y L
.

e

l'dl

A

.

s 4
,
,

i

"".’- .
LRR N

-~

%

=
4

- .‘:.‘:, 4 [ )

o’ <
L)

-



AT O PRI A R R RO AT O VR N ag® Seto s By g N gt g e gt B ha s T gt g¥ e AV 8Ra Ve 0¥ e 800 4% 670 A¥e 60, 9% 00 8w

;i definitions:

vy

N object: "n" name : character "1" .. "5"
N x x coordinate: real
N y y coordinate: real
[N z z coordinate: real

- HEN spd speed: real speed of vehicle -10.00 to 25.00
N dir direction: real compass dir in degrees from GN
N in lisp ("n" (x y z spd dir))

733 get an object in graphics environment (defined as above)

(defmethod (conversation-with-iris :object)
Q)
(makeobj
(send self :get-iris)
(send self :get-iris)
(send self :get-iris)
(send self :get-iris)
(send self :get-iris)
(send self :get-iris) ) )

;13 vision returns a list of objects in the tank's field of vision (100m radius)
133 this is effectively an association list

(defmethod (conversation-with-iris :vision)
(tank)
(let ((field nil)
(n-objects 0) )
(progn (send self :put-iris "V")
(send self :put-iris tank)
(if (equal "V" (send self :get-iris))
(progn (setq n-objects (send self :get-iris))
(dotimes
(x n-objects field)
(setq field (cons (send self :object) field)) ) )
(progn
(print "iris did not respond to the vision command sent from ")
(princ "tank ")
(princ tank) ) ) ) ) )

Figure 5.15 Application Communication in Lisp

in Figure 5.4. The same criteria for using a specific machinepath call apply (see Table
5.3). The same communications functions are available as in Table 5.4. Each

connection must be terminated as in Figure 5.9.

53

v

J' n' f\-v" o, J‘.q‘ <, _".(";.'"",;-';‘-‘\-'\-f .__‘ '\1'. __‘:\\f\-‘ 4‘\ q'\_- -"\-\-’. M a) \_-\v \

h.\“.u]\"-‘: BN _\.. \-“_ Y . .-_'_\' DN ~_-.." DR

4

ARG ET] s
az:baz;.'bz%{&.

-

%
-

-
- ah
-

> A8

) .‘- -y
274

LASES

2

e T R
’i{‘-“ "4:5.". ':_‘\_.

Y

«

o
ol

(e ]
'.)':'\‘,'&}J'

Yok d K4
e f;ﬁ?

o

® Yy
-

Pk g Y

'y

'y

LS
Ay A Gy S B Ry

o J -{l’

o @ LT

ML

PR



. PR D R W U LA R K L O R, R O R R A LY “2"0° D' a'h ah ats‘ae'a %1’ WS WOL AN X = Y )

(if (y-or-n-p "stop iris connection ?") (send *battle* :stop-iris))

Figure 5.16 Termination of Communications in Lisp

2. Differences With Direct Connect Protocol Use

a. Application Setup
The broadcast protocol is not directly modeled as a server/client
relationship. The broadcaster broadcasts to whomever is prepared to receive. The
receiver must be ready and so must be started first. Since the broadcaster is more similar
to the server in a server/client model, this connection order seems exactly backward. No
error will result if the broadcaster starts first, messages will simply not be received. The
receiver message is shown in Figure 5.17. The broadcaster message is shown in Figure

5.18. When a direct connect channel is also required between the same two machines,

achieving proper startup order is easy. Establish the direct connect channel first, then the
soon-to-be broadcasting process sends a message telling the receiver to start up. Once

started, the receiver process sends a message permitting the broadcaster to start.

ready to receive from broadcaster_name

Figure 5.17 Normal Receiver Response

Waiting to broadcast

Figure 5.18 Nommal Broadcaster Response

54

- R - ity tan TR Ykt A YA R R e S T AL AL AT L VR PPy
'\,l‘o,l'c..-. ,. ' 1% .80y 8%y 00, ._ W .o ¥ " " \l\. e a2 b b AT, ‘y‘ AR W ‘h. N R

L7 .

SR ARE I

.

x

e rry,

bs

R B

W
= A

T

T

Poc 7%

:'(’.:‘(I

X

L A A
- -

o i

Y “";."“- "‘p.?\ J -w =

:"{“l;,{ '-' ‘l' ." ",_’ )’ S

F
-
-

e
LN

”

5y

LT CI1W

>
-
-



b. Coding Practiccs
The parameters to the machinepath family of functions are used
differently for the broadcast protocol. All are required to be present, but some are
ignored (see Table 5.5). Since a broadcast channel is unidirectional, the receive_type
application calls are meaningless to the broadcaster (the receiver_has_data call always
retuns false). The send type application calls are meaningless to the receiver (the

sender _is_free call always returns false).

D. SUMMARY
Using the same functions, an application can either broadcast or directly connect to
another machine. The same steps of setup, connection, use, and termination are common

to both protocols. Care must be taken in the timing of the two (or more) machines setup.

.
‘.I
"

’ .
I‘l '.'

T

After that, an application merely reads or writes data.

l"'l

0

. "p "-
,1' «

>~ &

K]
r

g

¢

]
'

I3

.l .'
[
(L L.

%
FALs

. x_=

s

,1-'.;

.
4’
Balats
..-..'.‘.
)
£

Pt

L VN e S NN e S,
ENEAR D S N T A A RN ..\..‘ -..\‘_ L ROt




R A R A a8 Say tap Suq <ap tgf tal ’ ) 240”199 2% " gt ‘Y’ TRV NN ah e 0 119° 00 00"0.8 R "Rt b g gat 520 0a¥ 4, 3 ey e

25
7
L
Table 5.5 MACHINEPATH PARAMETERS NG
Parameter : : Ifuncuon : , LN
machinepath | dvnamicmachinepath dynamicmachinepaths [ ]
Number of channels that could \ ,
be created by application. This
— N oo o PIRECT con
nels. o
Arbitrary integer. Should be different than another i";‘
segmentnum user’s application. N :
| Only first call’s value used. j‘: )
DIRECT CONNECT and BROADCAST (receiver it
mname only): Name of machine to connect to. .
BROADCAST (broadcaster only): Required but ig- ;’_ y
nored .(‘
DIRECT CONNECT: Number (0-3076) of port to be ’f':'
used to send to other machine. V]
sendportnum BROADCAST (broadcaster only): Number (0-3076) .{‘.
of port to be used for broadcast. -2
BROADCAST (receiver only): Required but ignored N
DIRECT CONNECT: Number (0-3076) of port to be f:'
used to receive from other machine. ;5 ¢
receiveportnum BROADCAST (broadcaster only): Required but ig- <
nored NI
BROADCAST (receiver only): Number (0-3076) of Ny ‘
port to be used for broadcast. N
"server": Create DIRECT CONNECT channel ald
as a server. % q
"client": Create DIRECT CONNECT channel A,
as a client. >y
server - - Nt
broadcast': Create BROADCAST channel as a Y
broadcaster. ot
"receive”: Create BROADCAST channel as a F.‘
receiver. e
instructure Address of Machine structure created to hold channel ::
information. f_‘:
Amount of space to be used for yoit
freespace N/A dynamic memory allocation. 2
] Only first call’'s value used. ,:'_‘_‘.~
::E.-
Pl 2
.r; p
®
X
56 o
I.:.I'
|...:.v

i
®




AT B

LRGN a

oY e A B e

LRI N

o PO InE e i

FXI PP S

N

.,

R

AN

P T & T T R T T T T T Ry R Ry e e Y T N OOV L W I IV W S W WL L LY

VI. PERFORMANCE

A. INTRODUCTION

We look at the size of packets from our protocols. We also look at the effect of real
applications on the network. We try to do this for both direct connect and broadcast
protocols. However, no application making good use of broadcast protocols exists.
Hence, we used a direct connect test application and replaced the channel with two

broadcast channels.

B. DATA COLLECTION

The LANalyzer* EX 5500 network analyzer was used to gather Ethemnet statistics.

Version 2.0 of the software was used. The LANalyzer 5500 is a COMPAQ PORTABLE

o™ with a coprocessor board installed. The coprocessor board has an Intel 80286 CPU,
an Intel 82586 LAN coprocessor, and two MBytes of memory. It performs packet
collection, packet filtering, and network statistics calculation. The COMPAQ PORTABLE

II processor handles user software control, screen updating and disk I/O. [Ref. 29]

Samples were taken while direct connect applications were running on iris2 and
iris3. To compare direct connect protocol with the broadcast protocol, test programs
were used?®. Table 6.1 summarizes the information collected. These programs send a
character string, an integer, and a floating point number in a rotating sequence. The
messages are either sent to the machine specified on the command line or are broadcast

to all machines on the local network but only received from the machine specified.

° LANalyzer is a registered trademark of Excelan, Inc.
™ COMPAQ PORTABLE Ii is a tradmark of the COMPAQ Computer Corporation,

** See programs prog.c, prog2.c, gprog.c, and gprogl.c in Appendix D.

57

DIy

AT I P P I P T S P S P R T T N R oy




Table 6.1 DIRECT CONNECT VERSUS BROADCAST STATISTICS

Direct Connect Broadcast
Run Number Ave Max || Number Ave Max
of Packet | Test of Packet | Test
Number Size Load Size Load
Packets (bytes) %) Packets (bvies) (%)
1031 91 .10 9498 69 1.0
1047 111 .05 9860 69 1.0
465 96 <.05 4000 68 1.0
698 95 .05 2556 68 1.0

334 103 10 1262 68 1.0

The visual simulation application measured was a modified version of the driving

simulator [Ref. 7). Table 6.2 summarizes the information collected. This data was

taken during the day?®. The application’s communication code is shown in Figure 5.7

and Figure 5.8. One trip around the track took approximately five minutes. Seven
messages are sent every cycle to report status. Four messages are sent in the opposite
direction, as required, to control the car. One circuit was driven, on autopilot, for each
test run. There were about 500 cycles per test. Approximately 3600 messages were
generated per test. The number of packets sent was less than half of this. The apparent
discrepancy exists for two reasons. First, each packet sent also generates an

Table 6.2 APPLICATION NETWORK USE STATISTICS

Run

Number

Number
of

Average
Packet
Size

Peak
Network
Load

Peak
Test
Load

Average
Network
Load

Packets |\ tes) (%) (%) (%)

3747 89 13 10 .5
3297 89 11 A5 1.0
4152 89 15 <.05 5
2848 89 17 15 9
22830 89 17 10 3

* At night, with less competition for network resources, the results were similar.

TATHA I AT ST s AT At et
. \\o'\- e '\' R

o

RO AR Al 3

,.-.-.~
L%t 'n_'l':'u'l

T RN A




R IR R RN R AR LTI T WP U S L L N W M N VoW W W W W XY RN NN AR R R NG Y P PRI P P RPN T IO ToF. pp oty sty

7
ol
s
| | 3
acknowledgement packet in return. By acknowledging each packet, the stream socket "2
’
guarantee of delivery and proper sequence is met. Second, after the first packet ; Ll
LI
(containing the first message) is received, the remaining three or six messages are E,f:
immeaiately sent. The receiving process has often not yet handled the first one. The i
2o
remaining messages are combined into one and all are read as one block. This reduces o
the interchange to a typical total of four packets per cycle, two with data and two for o
f.:
acknowledgement. Similarly, four packets are usually generated whenever the navigator ;2" 3
)
process issues a command sequence to the car. .'
N N
An evaluation of a five-workstation application [Ref. 11] was also made. This "E:
vy
)
application used three Symbolics (syml, sym3, and sym4), expl, and iris2 to perform its ::'j
NS
tasks. Statistics were similar to the other application, but the Symbolics irisflavor lisp™ ®
A
exhibited some problem behavior. It sent three packets for every message. The first *'}:
o,
packet contained the rype field only. The second packet contained both the type field \E
e
and the /ength field. The third contained the entire message. If a second message i_
Caf
immediately followed the first, three more packets were sent, each adding one field to the _\_' .
l..-.
previous packet. Only one acknowledgement was received, as all packets in a group had ::::
o
the same identification number. A
g5
By
C. DISCUSSION .j'\
el
Attempting to use broadcast protocol with the simple test programs failed. One '.‘::
o
problem encountered was overflow of the sending buffer within the TCP/IP layers. The F
rapidity of attempted transmission was the cause. Higher network loading exacerbated
e
the problem. When the test application was slowed down with pringf calls (and the o
output redirected into a file) the buffer could keep up with sending requests. Using .' =
0%
30 See Appendix C .J-.,'_.:
[ J
59 :'. .
N
N
2

TN AT TR N AT T T R R e R R L i AR E S SRR LN
g



oy
™ - v _gav gox

broadcast protocol within a graphics display loop should pose no problems unless

numerous data elements are transmitted at one time.

Without acknowledgement packets, broadcasting put fewer packets on the network
than did the direct connect protocol. When overall load was haevy, some were lost. This
poses a serious problem for visual simulation applications. Without an elaborate
application-level protocol, the receiving process will never know what was intended to
be sent. Since only one data object is transmitted at a time, labeling the data objects is
difficult. All that is available is to alternately send different types and, after checking
the type received, make a determination of the likely intent of the sending process. If a
block of data, containing different types, could be sent as a single message, the decoding
problem would become one of simply sequence checking. Missing status packets can be
safely ignored in many situations. At most, a simple averaging algorithm can smooth
any discontinuities caused by a missing packet. Timestamping, with a virtual timestamp,

of each packet would eliminate the averaging requirement.

The Symbolics stream version is much less efficient, in terms of network
utilization, than is the Explorer’s. It still functions correctly, with no noticeable delay.
As the amount of data to transmit increases, the Symbolics flavor will eventually have

noticeable performance degradation.

The interconection of five machines loads the network only slightly more than does

that of two. The limitation will be from the process swap overhead, not the network.

D. SUMMARY

The direct connect protocol sends fewer packets than messages. Half of the packets
sent are acknowledgements. These acknowledgements provide the reliability of the
direct connect protocol. The broadcast protocol sends one packet for each message.

These packets tend to be smaller than those for the direct connect protocol. Until a

60

7 N " \J - N “ K 4 ey \/ “ g - . - *, v of *
N M GHASI N N A GNERL VY oSS o - SR fab Bt B SN a2 00 B8 a0 0 A Bathig 0 4 o X 8 Rt BN [

e T

R RS

’..,?,;“.“?- ’ -?

PR s i e ot
. * y &

LY e

b b

r v A

PR R T Y D



T

mechanism exists to bundle several messages into one broadcast packet, the broadcast

protocol is of small value.

Ty

‘-r .‘l.'.l
SR

Vo

by

N
R

A LI

o

o @

61

-

=

]
ey

[}
»

-
.
- -




\J‘.I.\"\( J\I\o‘.-_f . .‘_«' -, J‘ N -I'_-\_ S ‘. ._ ‘_ \\,‘ \ \._‘J' ._J .r .r\

a0k Bl Ta 0 el Yl Vet tad vl RS A -1t 4 P e A AP e NI Y IR e N e

VII. CONCLUSIONS AND RECOMMENDATIONS

A. LIMITATIONS

There are two primary limitations. First, the Lisp and C functions differ at the user
level. This was done to allow each to be used readily by programmers “thinking” in their
respective language. We have found this to be confusing to students who are
inexperienced in both languages. Second, there is no simple means to transmit a block of
data or an entire file. Each data element, unless it is part of an array of characters, must
be sent separately. This was done to “hit a middle ground” between a complex
facility—printf function—and low-level system calls. As long as only the direct connect
protocol existed, this was only an annoyance. As discussed in Chapter 6, this is a

critically limiting factor for the broadcast protocol.

The port to BSD UNIX systems without shared memory and semaphores was not
completed. The socket handling aspects are portable, but the shared memory aspects are
interwoven throughout the system. The difficult part of the porting will be designing the
message-passing protocol for the pipe between the application and the send and receive

processes, as discussed in Chapter 4. Other specific limitations include:

e no broadcast capability for Lisp machines
® no server capability for Lisp machines

e limited communication error handling—no signals are sent from the send or receive
processes to the application process if they encounter problems

e limited read/write error handling—a read or write of the wrong type will be
attempted and usually produce garbage

e no out-of-band capability

e Symbolics iris-flavor.lisp creates three packets per message

62

Lo Ta S T ‘I~¢’---I‘-’.

\

- -
K4
.

PN

- . I‘.
SN ‘r'

T

My
-

e

-

oL A

i
xx

K St ot MO Y,

3

I

P
L

:" Sty

/2

e ]
-y b B

‘ *
AR AL
RIS
" A A A

lad

s

;,,’,".'
a " 1y

1
a5

N “y P a
s x 7y W .

oo

A



S

B. FUTURE RESEARCH AREAS

Implementation of the missing structure data type is one key area in which more
work could be done. The most straight-forward solution to this would be to add
messages to the send section of the shared memory array without signalling the send
process to send it until the entire block was ready. Such a solution eliminates any need to
change the receiving functions at the cost of either an additional sending function or an
additional parameter to the existing send functions. The additional send function would
be a push function and the existing send functions would be modified to never signal the
send process to send. That would be left to the new push function. Adding a parameter
to each send function would allow any send function to push. While in some respects
simpler, changes to any application sending a block of data would have to carefully

monitor which send function actually is pushing.

Creation of a Lisp flavor that mimics the UNIX functions would prove useful to C
programmers who find a need for Lisp modules in their visual simulation. Adding server
and broadcast capabilities would increase the applicability of the protocols to future
visual simulation projects. Functions to break complex Lisp objects into simple ones and
then combine these into a single message are necessary for the broadcast protocol. The

Symbolics version should be corrected to send a packet only at message boundaries.

C. SUMMARY AND CONCLUSION

The routines described herein have already proved useful to researchers at the Naval
Postgraduate School. With Ethemet loading never exceeding one percent, these routines
are efficient enough to use without concem. With the additions mentioned above, the

goal of an easy-to-use yet powerful system will be reached.

63

L I e

'y % S

A %
EraL,

L4
2
X

LALLINAL®

WAl o N l.l, bt
rrzlrn( "l‘_l,

.‘
.&,
SR LELE

R, A S :
A A . '.—‘?{“l‘\"\._ J&.’ﬂ .

s,
-
A

-

&{
- Y

<1e
N .

AN NG
3‘; e
o ”

LY

(L
PR
.AL:SI

“axty




o0 a0 R Sl Y b ARA TR > KT LT TR - N \\\“- N -‘_,-_ o .-‘_ Satta"h '.‘__\“‘\ \*

APPENDIX A - IRIS MODULE DESCRIPTIONS

[. io_single.c

a. Calling Protocols

This module contains functions that are intended for the application’s use and
functions that are used exclusively by them. The parameters for extemnally accessible
functions are described below.

i.  number_received

number_received( instructure )

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
*/

ii. read_character
read_character(instructure,character_out)
Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment */
char *character_out; /* pointer to output character */

iii. read_characters
read_characters(instructure,outarray,arraysize)

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment */
char outarray[]; /* output character buffer */
int arraysize; /* the number of characters to be returned */

iv. read float

read_float(instructure,float_out)

Machine *instructure; /* includes
char *instructure. segment a pointer to the shared segment */
float *float_out: /* pointer to output float */

v. read _integer

read_integer(instructure,integer_out)

Machine *instructure; /* includes
char *instructure. segment a pointer to the shared segment */
int *integer_out; /* pointer to outpu! integer */
64

T N b e gt e o 0 e SO L N S S R T 2 0

“

, .(.
L AU
L Ll

--r-
® s

N - Y -
AL

Ly

T 5
«
a!

RO

«"

'@
A

A
DA,
L 4

-mj_u..
JH.?‘{{ ¢

3

et e
" .l .l

R LY.
oy WA

.
i

NS
.l

NG

¥
PR

i 3
S 5o



-~

0p 6”0 Yt Tal Pul. Vgt Fah Oal tal da0 Unl o) Vol tad oat Sal Vet el taf taV ab wat tat uat ral ety gia g 0n RV pte Vs tite ia 0% SV 0TR TR AVA O R R 0 00 0010 0 0n 050, 0 0,0 0.0 b Bt "o"
h,
.'é
Cng
Y
[ 4
o B
io single.c -
- K
"‘:-.a.
. . I-
vi. received_type :_}-».,
v
-l
char received_type( instructure ) >
Machine *instructure; /* includes Wi
char *instructure.segment a pointer to the shared segment o,
*/ t .::
.. . )
vil. write character Y
— |‘ i
A
write_character(instructure,character_in)
Foxd
Machine *instructure; /* includes ;ﬁ
char *instructure.segment a pointer to the shared segment :gf
int instructure.sendsem the semaphore to the sender */ Al
char *character_in; /* pointer to input character */ -g
L}
v . A
viil. write_characters )
®
write_characters(instructure,inarray,arraysize) S
N
Machine *instructure; /* includes Pl
char *instructure.segment a pointer to the shared segment ta
int instructure.receivesem the semaphore to the receiver. */ Ty,
char *inarray; /* input character buffer */ y
long arraysize; /* the number of characters input */
ix. write float o
A -
write_float{(instructure,float_in) i;
. . . o d
Machine *instructure; /* includes *:;
char *instructure.segment a pointer to the shared segment I
) int instructure.sendsem the semaphore to the sender */ !_
float *float_in; /* pointer to input float */ :\,
. . =
X. write_integer o~
- ~
. . I3 . . .. 9
write_integer(instructure,integer_in) )
o
o
Machine *instructure; /* includes ®
char *instructure.segment a pointer to the shared segment ]
int instructure.sendsem the semaphore to the sender */ o
int *integer_in; /* pointer to input integer */ N
Y
S
Y
o
[°),¢
LY
oy
W)
'
o
o
- A
7 .
s
‘-':\-
e
X
(S
[y u A
l‘r y
"m
»
" {
65 V\s
8!
+
[ .
[
Al
. :\'-
g o L S A R S s et T A s A A AT A T A A N AT N N -.‘_\'-_\ ‘



Vo Wiy B g™
L‘.\."‘J.l. Py,

"f‘

e

io_single.c
b. Code and Description
/*t*!**ﬁ#*#*t***#tt‘t**‘*‘****t##t*t#***t******ﬁ*!*#*tt‘*!**‘*‘*ttt#t#“*tt**#
= *
* TITLE : Inter-Computer Communication Package i
»* *
* MODULE : io_single.c *
* »
* VERSION: 3.0 -
» *
* DATE : 15 December 1987 *
* *
* AUTHOR : Theodore H. Barrow *
- *
A A RS R E R R R A SR AR R R R R SRR R R R R R R Rt R R R R R R R R R R R R Rl R R R R R R ]
L »
* HISTORY: .
= *
* VERSION: 1.0 *
* *
* DATE : 27 May 1987 *
» *
* AUTHOR : Theodore H. Barrow *
- *
* DESC. : Originally part of support.c. Contains the documented read *
. and write calls for use by the application programmer. *
* *
* VERSION: 2.0 -
® *
* DATE : 21 October 1987 *
L *
* AUTHOR : Theodore H. Barrow *
= »
* DESC. : Modified read routines to use a global array to manage the *
» possibility of a partial message receipt. .
* #
* VERSION: 3.0 -
» »*
* DATE : 15 December 1987 *
L *
* AUTHOR : Theodore H. Barrow *
. *
* DESC. : Modified read routines to use part of a buffer set instead of *
he the global array to manage the reception of a partial message. *
LA R EEE LA R R AR R R AR SR R R FE R RS R RS R R R R R R R E R SRR 2SR R RS R R RS TR T
* *
* RECORD OF CHANGES *
- *
*Version* Date * Author * * Affected *Reqd*
* * Change Description *  Modules *Vers*
A e oo e e A e i o e e o o o ok o e ol ol e e ol e o e ool e sk o i o o o il ol o oo e e e e e e e o o o o o e e o e ok o e ok o e e e o
* » * * * * *
» - * * *

t*ﬁ*t'ttttt*‘**‘**t*#**#*t*t**#*##*t*****tt*t*t!***‘##t**#t*t*t*tttt*t*******/

66

LS I IR A T e W W Py M N Y L T
RPN BN o XN e e v
v. 4% W0 00 0] S S T T L e VWY 2 b

RN AN AN Pt AN L PN N a o Vo,
L e e L Dl g e O e G

~R

oV,

gt Ae

0 x x

L LW

T
oy

f

f
1 3

A

1)

Y

el

s

R S

rPlS
,J fa g

L 9E YR YA O A

LR

Pal

4

7 277

oy

|30 40 X o

=%
is:

et

R

YO

£ o 5N 030G S

o

Y

X

-



A Py e g S VAN :J‘wtajﬂ:J':‘a'!tﬂ:étﬂ:ﬁ'wtﬁf:f#f:_c'{'af:':

® 2a® Sat’ ga0: 00" 1ad"ta' 8 029 0a fud-dud et Sa® Aeb BV R “0at 8a® fa? Pat d(0-

~ . L i W

io_single.c

#include "shared.h”
#include "gl.h"

/* The following routine copies a character into the shared segment.
It puts the type CHARACTER_TYPE in the first byte and the
length 0001 into the next four bytes.
then puts the total size at the top of the shared segment.
then sends a wakeup to the sender program.
It uses an input structure since called by main program

*/

write_character(instructure,character_in)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
int instructure.sendsem the semaphore to the sender */

char *character_in; /* pointer to input character */

{
int msgsize = § + CHARACTER_SIZE; /* size of message */

char *senderstart = instructure->segment + SENDEROFESET;
/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = senderstart + 9;

long *sentlength = (long *)instructure->segment + WSENDEROFFSET;

/* insert the type code */
*(senderstart + 4) = CHARACTER_TYPE;

/* insert the length IN BYTES of the input data */
sprintf((senderstart + 5), "%04d", CHARACTER_SIZE);

/* move the data bytes */
memcpy(datastart, character_in, CHARACTER_SIZE) ;

/* copy out the size of the data from the shared segment top */
*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.
*/

V(instructure->sendsem);

} /* write_character */

67

W b B !

~
.

« v._\.;-._\:'. .

= _8_ 2 3
22

)

R

= -

R 2 S

E A A

R

PR

; _{l.‘,&;u‘; .'{. ‘Y. ‘_-(;-:., ': .'. "1.‘ ;

"}
o
-

PN LV o

' (‘(‘:

L

RN

W\t

5
X g

‘\I:::'u..'l -‘..'. v

.

L4
<«

‘w



WA O AU

3 € ) o) Sl Saf ol ol Yol tal Y TR ) = g g At ats"al, e ata AV a8 s 4V, . ' "0 %0 870.0" 0.0 0.0 0at 08 ., . ey @at”
\ 1%, UYLV \ N O N 0} () ; Y 00,0700 '0,8 4§ )

io_single.c

/* The following routine converts an integer to a string and copies it
into the shared segment.

It puts the type INTEGER_TYPE in the first byte and the string length
(in bytes) as an integer (in string format) into the next four bytes.
then puts the total size at the top of the shared segment.
then sends a wakeup to the sender program.

It uses an input structure since called by main program

*/

write_integer(instructure,integer_in)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
int instructure.sendsem the semaphore to the sender */
int *integer_in; /* pointer to input integer */
{
char integer_string[20]; /* string for integer conversion */
int length; /* length of integer string */
int msgsize; /* size of message */

char *senderstart = instructure->segment + SENDEROFFSET;
/* the + 9 i3 to skip over the first 4 bytes for the size

of the shared memory data and the 5 bytes of header information */
char *datastart = senderstart + 9;

long *sentlength = (long *)instructure->segment + WSENDEROFFSET;

/* convert integer to string */
sprintf( integer_string,"%d", *integer_in );

/* find length of integer string and thus message */
length = strien( integer_string );

msgsize = 5 + length;

/* insert the type code */
*(senderstart + 4) = INTEGER_TYPE;

/* insert the length IN BYTES of the input data */
sprintf((senderstart + 5), "%04d", length);

/* move the data bytes */
memcpy(datastart, integer_string, length);

/* copy out the size of the data from the shared segment top */
*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.
*/

V(instructure->sendsem);

} /* write_integer */

68

N e T T T T AT T R A T T AT T T T A N T TN A
Aalas 3 A O A oLl o o 5 2 ™ 3 - 3 . i N

-
. A

P T

Cr TR X W W
- »

oy

e o T -

: B A A LS

=

& o

<%

LRy

g

T

P X

PN

“.
a

-,
x
L,

AR A

TNy

5 5

oy R LAY
- > W

i

e
s _® a2



— - a. e . 5% &k hh B'A B e Bea fén |
o DM N T T e Ta e " W W e N WO T N NN N 4 A's ¥ .

io_single.c

/* The following routine converts a float to a string and copies it

into the shared segment.
It puts the type FLOAT_TYPE in the first byte and the length

(in bytes) as an integer (in string format) into the next four bytes.

then puts the total size at the top of the shared segment.
then sends a wakeup to the sender program.
It uses an input structure since cailed by main program

*/
write_float(instructure,float_in)
Machine *instructure: /* includes
char *instructure.segment a pointer to the shared segment
int instructure.sendsem the semaphore to the sender */
float *float_in; /* pointer to input float */
{
char float_string[30]; /* string for float conversion */
int length; /* length of float string */
int msgsize: /* size of message */

char *senderstart = instructure->segment + SENDEROFFSET,;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */
char *datastart = senderstart + 9;

long *sentlength = (long *)instructure->segment + WSENDEROFFSET;

/* convert float to string */
sprintf( float_string, "%f”, *float_in );

/* find length of float string and thus message */
length = strlen( float_string );
msgsize = 35 + length;

/* insert the type code */
*(senderstart + 4) = FLOAT TYPE;

/* insert the length IN BYTES of the input data */
sprintf((senderstart + 5), "%U4d", length);

/* move the data bytes */
memcpy(datastart, float_string, length);

/* copy out the size of the data from the shared segment top */
*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.
*/

V(instructure->sendsem);

/* write_float */

69

e

! ®

Ll

L

PR Ry

: ,_"{!.."'_"

e A 1 s e v
'v]’v'r ; {f;;, ‘O Wt .J‘:',.'
% a  a 5 % S

.
2ttd

710 e

”

r.lr{

o
P ]
-

o
49

.ﬁ,,
SO

s
!

,..
'y "y "t ox§
sA A
,.‘a-..

o)

%

'®

rd

a3

l. "' .(.

,I".
a *

4710
PRSI

P LA
»’oL

RIS

1@

e )



_. ) _ __‘ _‘._. ~-¥.u o ‘."‘ "’ '."‘ _’_‘ . '.‘l' _ _ A '.‘ J X1 LN N ‘.‘ Mt l"
io_single.c
/* This routine returns the type of data received. */
char received_type( instructure )
Machine *instructure:; /* includes
char *instructure.segment a pointer to the shared segment
*/
{ .
return( *(instructure->segment + RECEIVEROFFSET + 4) );
)
70
e e e et e e et T, L S S A T T AT SR T e Y B S AR P w T M N T TN e

s

W e, TR 4T e

s v oy
ST .

e

T ‘P“?. "l
o

«
[

VS

AL
i)

77
-

oy

P4

O T I !
R o I rd

«
SN
‘

o re

s«
r ey

AN



QAWML LR R XS L0, My L At W ¥ ¥ N g LT W T TN et -, ’ o SO AL NG TSI

»
&)
. . RS
io_single.c o
o
/* This routine returns the number of data items received. */ g
el
number_received( instructure ) 2
Machine *instructure; /* includes 3_
.l
char *instructure.segment a pointer to the shared segment */ n
( s
int temp_int; AP,
char *protocolhold = instructure->segment + PROTOCOLHOLDOFFSET; il
long *partreceived = (long *)protocolhold; a
"
»
long *receivedlength = (long *)instructure->segment + WRECEIVEROFFSET;, .
2
char *receiverstart = instructure->segment + RECEIVEROFFSET, :{-
/* check if only part of protocol information received */ ok
. . ]
if( *receivedlength < §) 5
{ 3
/* move data received (as well as length field) to holding area */ h
memcpy( protocolhold, receiverstart, *receivedlength + 4 ); o
“ i
/* get next message(s) */ J
free_receiver(instructure->segment); x ¥
V(instructure->receivesem): »
while( receiver_is_free{instructure->segment) ) /* wait */ ; R
/* copy rest of protocol data into holding area */ -?;
memcpy( (protocolhold + *partreceived + 4), (receiverstart + 4), o
(S - *partreceived) ); }v
} R
else iy
{ . , )
/* copy protocol data into holding area */ r
memcpy( protocolhold, receiverstart, 9); e
-
N
/* initialize *partreceived so it can be used later */ <o
*partreceived = 0; S
l .r:'
s
/* determine the length of the received integer string and thus message */ )
sscanf( protocolhold + 5, "%d", &temp_int ); -3
switch( *(protocolhold + 4) ) 'i:
{ e
case CHARACTER_TYPE: R
return{ 1 ); -t
break, -
case INTEGER TYPE: [ ]
return{ | ). T

break:
case FLOAT TYPE:
returnt 1 )
break:
case CHARACTER_ARRAY_TYPE:
return( temp_int/CHARACTER_SIZE ):
break:
case [NTEGER_ARRAY_TYPE:
return( temp_int/INTEGER_SIZE );
hreak:
case FLOAT_ARRAY_TYPE:
returnt temp_int/FLOAT_SIZE ):

SN
8

[P A
AN

.
Y

3

A,

.

v v e Ty
.
«

J /* number_received */ e

71 a




T R T TR R RT  A PRI N T T L N A S N Ll AR AT R e, (S St PR 1S -y - "
T
o
N

&

o

. s "

io_single.c el

oF

/* The following routine returns a character from the shared segment.
It frees the receiver side of the shared segment if it is empty.

pE

It then sends a wakeup to the receiver program. :;,
It uses an input structure since called by main program. ]
*/
-
read_character(instructure character_out) : y
NS
Machine *instructure: /* includes s$
S0
char *instructure.segment a pointer to the shared segment */ :,.
}.
char *character_out; /* pointer to output character */ )
L
{ R
/* temporary storage for move of received data or for protocol information -
when partial receipt */ oo
char temp{LARGESTREAD]; e
. A
char *protocolhold = instructure->segment + PROTOCOLHOLDOFFSET: .
®
/* first four bytes of holding area as integer */ X7
long *partreceived = (long *)protocolhold; 43:
Al
int msgsize = 5 + CHARACTER_SIZE; /* size of message */ é}e
l~ ‘
char *receiverstart = instructure->segment + RECEIVEROFFSET; f\‘
» i
H bl
/* the + 9 is to skip over the first 4 bytes for the size ®
of the shared memory data and the 5 bytes of header information */ g
char *datastart = receiverstart + 9; O
long *receivedlength = (long *)instructurc->segment + WRECEIVEROFFSET; bty
»
/* check if first part of protocol information is missing */ )
if( *"partreceived == 0 ) ? ,
! ®
/* check if only part of protocol information received */ P
if( *receivedlength <= 5) "
‘ '-,l
/* move data received (as well as length field) to holding area */ . Ty
memcpy( protocolhold, receiverstart, *receivedlength + 4 ); '},
»
A
/* get next message(s) */ -
free_receiver(instructure->segment);: ®
V(instructure->receivesem); =%
while( receiver_is_free(instructure->segment) ) /* wait */ . s
8 N
) "
} 5
.
/* reset msgsize and datastart to correspond to partial receipt */ hﬂ
mggsize -= *partreceived; MY
datastart -= *partreceived; ®
.
/* move the bytes */ \3
memcpy(character_out, datastart, CHARACTER_SIZE): :}
1
/* make buffer ready for next read */ &2
reset_buffer( receivedlength, msgsize, instructure, datastart, h:
HARACTER_SIZE, partreceived, receiverstart ); N
} /* read _character */ a%
:':\
N
-
[ ]
-~
72 R
’ e
,
v'\l
¢
..
N
0 ‘r
-\I
o
., ® u” a's " a"n LI B T R P 4 «” e ea" et e . P M S T T e T A e, e e T
- “ " '\' . . ‘P ',-\ - '."'f N ] '.r'.- 'f'.' .f'.-< v .-'.-‘1 P L O U PP L N —"\-'



io_single.c

/* The following routine converts a string in the shared segment
into the returned integer.
frees the receiver side of the shared seyment if it is empty.
then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_integer(instructure,integer_out)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment */
int *integer_out; /{* pointer to output integer */
( char integer_string{LARGESTREAD]}; /* string storage for received data */
char *protocolhold = instructure->segment + PROTOCOLHOLDOFFSET;
/* first four bytes of holding area as integer */
long *partreceived = (long *)protocolhold;
int length; /* length of integer string read */
long segmentlength; /* length of data of partial massage */
int msgsize; /* size of message */

char *receiverstart = insiructure->segment + RECEIVEROFFSET:

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */
char *datastart = receiverstart + 9;

long *receivedlength = (long *)instructure->segment + WRECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
get_protocol( protocolhold, partreceived, receivedlength, receiverstart,
instructure, &length, &msgsize, &datastart );

/* check if only part of data has been received */

if( *receivedlength < msgsize )
{
get_data( &segmentlength, receivedlength, partreceived,
integer_string, &datastart, &msgsize,
receiverstart, instructure, &length);

/* convert to string */
integer_stringf{segmentlength + msgsize] = '\0’;
}

else

/* move the integer string bytes */
memcpy(integer_string, datastart, length):

/* convert to string */
integer_string[length] = *\O';
]

/* convert the received string to an integer */
sscanf{ integer_string, "%d", integer_out ):

/* make buffer ready for next read */
reset_buffer( receivedlength, msgsize, instructure, datastart, length,

partreceived, receirverstart ):

} /* read_integer */

.
1 4
.

R AT

A

A @Y

..'Y
x

o)

.

s,

e

.l
v v

LA AL
PR

1@
5, «

‘.?\ “x

DAL

[

s
)

N

"-l'-'.'l.": o,
LIPS

2

e

-
”
»

l"
.;"f'.f_

"
o




io_single.c

/* The following routine converts a string in the shared segment
into the user supplied float.
frees the receiver side of the shared segment if empty.
then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_float(instructure,float_out)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment */
float *float_out; /* pointer to output float */

{
char float_string[LARGESTREAD]: /* string storage for received data */

char *protocolhold = instructure->segment + PROTOCOLHOLDOFFSET;

/* first four bytes of holding area as integer */

long *partreceived = (long *)protocolhold;

int length; /* length of float string read */

long segmentlength; /* length of data of partial massage */
int msgsize; /* size of message */

char *receiverstart = instructure->segment + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */
char *datastart = receiverstart + 9;

long *receivedlength = (long *)instructure->segment + WRECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
get _protocol( protocolhold, partreceived, receivedlength, receiverstart,
tnstructure, &length, &msgsize, &datastart );

/* check if only part of data has been received */
if( *receivedlength < msgsize )
{
get_data( &segmentlength, receivedlength, partreceived,
float_string, &datastart, &msgsize,
receiverstart, instructure, &length);

/™ convert to string */
float_string[segmentlength + msgsize] = "\0";
)
else
{
/* move the float string bytes */
memcpy(float_string, datastart, length);

/* convert to string */
flont_s(ring[leng(h? = '\0";
|

/* convert the received string to an float */
sscanf( float_string, "%f", float_out );

/* make buffer ready for next read */
reset_buffer( receivedlength, msgsize, instructure, datastart, length,
partreceived, receiverstart );

} /* read_float */

74

e : - . .
A A S A T A AL AR TRY

o &

R R A AN R A S o

» ATy . V5

P L T

d

.
[ -

AR

i@ia
14"

.

A
L

LY

L

-

I. ‘,{ .
B L XA

T

w5
o
Fe.

R

<

"‘.I-'- \- o

A R

A

LA

”

@ 77

Ll
8 ey

o
* st
WPt

s AP
L l.:'v." 'A:‘ IA
>

1

L

o

S |

L R
.'lfx."l.!'
A A

LR
a '!
d

o '.A"f
Py



et ate ata b Pt et T b e Yt Vel Vi T R T T A R OO O P T K R IR v VRV YTV IR TS g

N
&"
v
»
Y,
io_single.c w
~
/* The following routine copies characters from an array Ry
into the shared segment. o~
It puts the type CHARACTER_ARRAY TYPE in the first byte and the ~
array length (in bytes) as an integer into the next four bytes. P
then puts the total size at the top of the shared segment. gy
then sends a wakeup to the sender program. e
It uses an input structure since called by main program ey
EN.
*/ ::
» . . . -\
write_characters(instructure,inarray,arraysize) ey
Machine *instructure: /* includes -
. . -
char *instructure.segment a pointer to the shared segment ,:-
? N
int instructure.receivesem the semaphore to the receiver. */ ¢:.
-
Y
char *inarray; /* input character buffer */ o
long arraysize; /* the number of characters input */ ,r
( v
. . . . . N
int datasize = arraysize * CHARACTER_SIZE; /* size of data field */ ﬂ}
. o
int msgsize = 5 + datasize; /* size of message */ \l:
char *senderstart = instructure->segment + SENDEROFFSET; ;'
/* the + 9 is to skip over the first 4 bytes for the size A
of the shared memory data and the 5 bytes of header information */ “4
char *datastart = senderstart + 9; P
o
long *sentlength = (long *)instructure->segment + WSENDEROFFSET; ?\-
g ¢
v
. /* insert the type code */ b i
*(senderstart + 4) = CHARACTER_ARRAY_ TYPE; prt
IAS
7~ 4
/* insert the length IN BYTES of the input data */ ',:

sprintf((senderstart + 5), "%04d", (int)datasize);

o~k
L4

“x

/* move the data bytes */
memcpy((datastart), inarray, datasize);

X,
>
e

/* copy out the size of the data from the shared segment top */
*sentlength = 5 + datasize;

%A@

vy

Py
X2

/* at this point, we send a wakeup to the sender program,

indicating that he can reuse the shared segment. )
ﬂl/ '-}‘
V(instructure->sendsem); ot

(l Ve

) /* write_characters */ -

75 o

SRR
2

R LY R R PR R R e v - (]
'( 'ﬁ' ""-‘F'\ Ol 0 Yy

R

” 'YLV I rE) AT R IALPIPL I FL LIS S LTI S {-_‘.-!-.-*-V-_-’-‘,...-_-J..
0,506 3,00, ‘-.. ,A Sy l..l "" .ﬁ .. AN N e 9o e A



RO

PR

1000

e

o)

"'b-“\- \’\‘-. ‘s'\;.'.'\.",. N S N AT N AT TR TR P/
' oL a 6,000°8, 0 LA W L8, AdS

Rt Qe 0 LGN U gt & 1 AU At LU B S K N L A

Y

io_single.c

/* The following routine copies bytes from the shared segment
into the user supplied array.
It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_characters(instructure,outarray,arraysize)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment */
char outarray[]: /* output character buffer */
int arraysize; /* the number of characters to be returned */
{
char *protocolhold = instructure->segment + PROTOCOLHOLDOFFSET;
/* first four bytes of holding area as integer */
long *partreceived = (long *)protocolhold;
int length: /* length of character string read */
long segmentlength; /* length of data of partial massage */

int datasize = arraysize * CHARACTER_SIZE; /* size of requested data field */
int requestsize; /* size of message */
int msgsize = 5 + datasize; /* size of requested message */
char *receiverstart = instructure->segment + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size

of the shared memory data and the 5 bytes of header information */
char *datastart = receiverstart + 9:

long *receivediength = (long *)instructure->segment + WRECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */

get_protocol( protocolhold, partreceived, receivedlength, receiverstart,
instructure, &length, &msgsize, &datastart );

/* check if all of data (or more) was requested */

if( length <= arraysize )

/* check if only part of data has been received */
if( *receivedlength < msgsize )

{
get_data( &segmentlength, receivedlength, partreceived,
outarray, &datastart, &msgsize,
receiverstart, instructure, &datasize ).
!
else

{
/* move the character bytes */
memcpy(outarray, datastart, length);

}

/* make buffer ready for next read */
reset_buffer( receivedlength, msgsize, instructure, datastart, datasize,
partreceived, receiverstart ):

76

N

v '\ ol - .

T T, T T T o Vv v W W W,

T ‘, \‘.’._‘n}"-‘.‘\'.’--._ .'_‘-",;- RN L o




ERASAS AN A AN AW UV IN U S Y TR0 L P LN LW LW L LW L W LN S WO YO AW J YO N WO RO W 20,0 1000 00 ‘B0t 1 0 006 a0 1400 e 0a® faV Bat Syt ot bt

220 )

<

"

io_single.c

ey
N

- W b7y

else

{

“atw

/* move the bytes */
memcpy(outarray, datastart, datasize);

- /* make buffer ready for next read */
reset_buffer( receivedlength, msgsize, instructure, datastart, datasize, \
partreceived, receiverstart ); bad
”

} /* read_characters */

A

'ﬁ:.ﬁﬁa"’i;

v
»

‘..-.,
L Y
’l’l"“

)

(4
5

.
.

]
o7

&
oo

(Y

x

L s

S5
g T,

+

P
AR
TRRRNY

N3, x
bR
PPN

EELELO S
- +% @
5‘“;';".’&-"'1.".

R RNy |
Ay
PSS .

At At b T

-
Ay
"’f{r

.
LY
'

e
4




o 0 G L e 8 B B L R 0 a e AN Ve Yt a s s 00’ O U ® BB b ) B P g e hA 0°R 0P a 0 v L

io_single.c

/* These are various support routines used by several of the preceding

*/

functions.

reset_buffer(receivedlength, msgsize, instructure, datastart, datasize,

partreceived, receiverstart)

long *receivedlength; /* first four bytes of receive part of shared seg */
g g y p g

int msgsize; /* size of message read */

Machine *instructure; /* includes

char *datastart;

char *instructure. segment a pointer to the shared segment
int instructure.receivesem the semaphore to the receiver. */

/* address data starts in receive part of shared seg */

int datasize; /* length of data part of message */
long *partreceived; /* length of message received in previous block */
char *receiverstart; /* address receive part of shared seg starts */

{

char temp{LARGESTREAD]; /* temporary storage for move of received data */
/* free the receiver segment if this is only message received */
if(*receivedlength == msgsize)

{

free_receiver(instructure->segment);

/* at this point, we should send a wakeup to the receiver program,
indicating that he can reuse the shared segment.
*/

V(instructure->receivesem);

}

else /* shift data forward in shared memory segment */

! *receivedlength -= msgsize:
memcpy(temp, (datastart + datasize), (LARGESTREAD - msgsize));
memcpy((receiverstart + 4), temp, (LARGESTREAD - msgsize));

/* reset *partreceived for next read */

*partreceived = 0;

/* reset_buffer */

78

AR S N Y

I L L R ey e P o P o b £ S N B

g

ey

e

» - £ an
\,{\'f {:v“.

VAe

7,

&

Lol
2

{®
L4

-

P S

' CX

4

4

e
)

"v"v
.

“x "
>
e

P

- g
SO

s
535

P

- -
Tl S

TNV N O KRS



? gl

.“ n..-{-'ﬁ?- .

0t Bt Bl B8 Bt A Al AR B A 0 Rl Bt Gt Bt Bad Bt Bt had Bl TS
gt fa% Rt et et Uat gaV lat = Y R fat Bt P2 8% 0t 020 eV T el Rat Rt et p R A A

io_single.c

get_protocol( protocolhold, partreceived, receivedlength, receiverstart,
itnstructure, length, msgsize, datastart )

char *protocolhold: /* protocol holding area */
long *partreceived: /* length of message received in previous block */
long *receivedlength: /* first four bytes of receive part of shared seg */
char *receiverstart; /* address receive part of shared seg starts */
Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment

int instructure.receivesem the semaphore to the receiver. */
int *length; /* length of data field in message */
int *msgsize; /* length of message */
char **datastart; /* address data starts in receive part of shared seg */

/* check if first part of protocol information is missing */
if( *partreceived ==
{
/* check if only part of protocol information received */
if( *receivedlength <= 5)
(
/* move data received (as well as length field) to holding area */
memcpy( protocolhold, receiverstart, *receivedlength + 4 );

/* get next message(s) */
free_receiver(instructure->segment);
V(instructure->receivesem);

while( receiver_is_free(instructure->segment) ) /* wait */ ;

/* copy rest of protocol data into holding area */
memcpy( (protocolhold + *partreceived + 4), (receiverstart + 4),
(5 - *partreceived) );

else

{
/* copy protocol data into holding area */
memcpy( protocolhold, receiverstart, 9);

/* initialize *partreceived so it can be used later */
! p
*partreceived = 0;

)
/* determine the length of the received data string and thus message */
sscan{{ protocolhold + 5, "%d", length ):

*msgsize = 5 + *length - *partreceived;

/* reset datastart to compensate for possible partial receipt */
*datastart -= *partreceived;

} /* get_protocol */

79

N S AT A N A R AT g A s B N I A N E e A R S/ S s ¥ LR SRR
N . L3 ~ A A B e )

2
«

I.'l
N

1L
REEAdS

7,
0 'l'l'i

e =
’}“.

ﬁ-
FEE

-

IR
i
Pl e a2

Ty !
J"J-"!."

-

L G
'l‘Jl_

-
a
o~

14
oo

,',J;{

® ZEIAIEe

-
0
i

)

P KA

P
YN



AR R R

R R R T R R L T LA A T Y N LN G OV O O T I Y TR R TR a b Ey et el Bl

io_single.c

get_data( segmentlength, receivedlength, partreceived, string_array,
datastart, msgsize, receiverstart, instructure, datasize )

long *segmentlength: /* length of partial data */
long *receivedlength: /* first four bytes of receive part of shared seg */
long *partreceived: /* length of message received in previous block */
char string_array{]: /* storage for incoming characters */
char **datastart; /* address data starts in receive part of shared seg */
int *msgsize; /* length of message */
char *receiverstart; /* address receive part of shared seg starts */
Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment

int instructure.receivesem the semaphore to the receiver. */
:nt *datasize; /* length of data field in message */

/* determine length of data that has been received */
*segmentlength = *receivedlength - 5 + *partreceived;

/* copy the first segment of data to holding array */
memcpy( string_array, *datastart, *segmentlength );

/* reset msgsize and datastart to correspond to partial receipt */

*msgsize -= *segmentlength + 5 - *partreceived;
*datastart = receiverstart + 4; ;
/* get next meszage(s) */ Y
free_receiver(instructure->segment); [
V(instructure->receivesem); L
while( receiver_is_free(instructure->segment) ) /* wait */ ; .
b
ol
/* cycle through as many messages as it takes */ - \ﬁ}
. . v .
while( *receivedlength < *msgsize ) ,jﬁ.
{ M
/* copy the next segment of data to holding array */ «InA
memcpy( &string_array[*segmentlength], *datastart, *receivedlength ); @
i . . AN
/* reset msgsize and segmentlength to correspond to partial receipt */ o0
*msgsize -= *receivedlength; AT -
*segmentlength -= *receivedlength; S
/* get next message(s) */ ~?;7
free _receiver(instructure->segment); R
V(instructure->receivesem);

while( receiver_is_free(instructure->segment) ) /* wait */

® L
.i\'
] ‘

it
. W)
/* copy the last segment of data to holding array */ W]
memcpy( &string_array[*segmentlength], *datastart, *msgsize );: oYy
S

-_)_‘-

/* reset datasize to properly reflect last segment size */ e

*datasize = *msgsize; ®
FF

} /* get_data */ e
e

SN

e

“ v

[N
P

s

80

aoTn o
oy

4
. ."’.. . "i

P

A A U R AV TR SR



- e

P——

3,

- v

g ata gl s o te' et

- f”fa{ f ,';‘f#’&f&fﬁfﬁ'&{'_bﬂi :'; AL :f;ﬂ'ﬂ'f‘ S ‘: ‘{t '¢:w'¢:ff tatf-

2 Va0 b RaB Ga 00 8" 00 G800 0 8 0 h 14 Yy 0 Y 0% - TR Y,

2. mpath.c

a. Calling Protocols

All functions in this module are meant to be accessible by the application.

These functions set up and tear down the communications path between two machines.

i.  deletemachinepath

deletemachinepath(instructure)

Machine *instructure; /* structure to hold segment and semaphore info:
char *instructure.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id
int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.
int instructure.receivesem -- the returned receive semaphore.

We base it on the receive portnumbe

*/
il. machinepath
machinepath(segmentnum,mname, sendportnum, receiveportnum,server,instructure)

long segmentnum; /* the key to use for the created shared segment */

char mname[]; /* machinename character string */
long sendportnum,receiveportnum; /* send and receive port numbers */
char server[]); /* this character string is either "client” or "server”

It indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server.

*!
Machine *instructure; /* structure to hold segment and semaphore info:
char *instructure.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id
int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.
int instructure.receivesem -- the returned receive semaphore.

*/
iii. dynamicmachinepath

dynamicmachinepath(segmentnum,mname, sendportnum,receiveportnum,server,
instructure, freespace)

long segmentnum: /* the key to use for the created shared segment */

char mnamel }; /* machinename character string */
long sendportnum,receiveportnum; /* send and receive port numbers */
char server([]: /* this character string is either "client” or "server”

It indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server.

r.

*/
Machine *instructure; /* structure to hold segment and semaphore info:
char *instructure.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id
int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.
int instructure.receivesem -- the returned receive semaphore.
We base it on the receive portnumber.
-
/
int freespace; /* amount of freespace desired for dynamic memory allocation

after this routine has been called. */

81

LA 3 8 8 A

Oty ™ \.—ﬁ!:

LisN

7t T

LY

LR N L T PO T T
A IO L O X

.

QR A _A_N_w_i
Casat aaia?

N "

PR
-
X

B P

L

L4

>~
'

ot

Y W e Y )

A

-

IR



R A o Uy R L AR R LAY SO G S B UL )6 ) G S G R SRR LU G Uh U8l At GRS L GGG G LA DR AL LEAL O SR A

v .
el

mpath.c K/
» -"
) . . . ¢
) iv. dvnamicmachinepaths 7
D X
4 dynamicmachinepaths(pummachines, segmentnum, mname ,sendportnum,receiveportnum, :
: server.instructure, freespace)
n
int pummachines: /* the maximum number of other machines to be attached */ K
Y long segmentnum: /* the key to use for the created shared segment */ :
: char mname{]: /* machinename character string */ 8y
1 long sendportinum,receiveportnum; /* send and receive port numbers */ vy
' char server(]: /* this character string is either "client” or "server". . t
It indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server. .
*/ Y
; Machine *instructure; /* structure to hold segment and semapliore info: ;-
: char *instructure.segment -- returned ptr to the shared segment. e
! int instructure.shmid -- returned system generated shared mem id s
int instructure.sendsem -- the returned send semaphore. -
We base it on the send portnumber. "
. int instructure.receivesem -- the returned receive semaphore. -
We base it on the rececive portnumber. .
*
5 int freespace; /* amount of freespace desired for dynamic memory allocation

after this routine has been called., */

o ]
b. Code and Description \

/#!l‘#’tt!t##t*#******‘****‘****#*#‘####**t***t*****#***‘***t********#*#******* it
E ] *
* TITLE : Inter-Computer Communication Package * *
- *
\ * MIDULE : mpath.c > :
4 * * *
) * VERSION: 5.0 * .
p * * L%
0 * DATE : 31 May 1988 * . :
* »* .
* AUTHOR : Theodore H. Barrow * -,
1 * * "
3 A0t e o e e ok o ok i ok o ok O e ol e o ok e ol e e o o i o o o ok R ook o O o o o oo e e ol e ol i ke e e e e e ok e o e e e e o ok ok ol o ol ok ok e ok ok :
* " B o
] * HISTORY . "
- L] * &
: . VERSION: 1 0 * o
b4 * ..
* DATE : 6 February 1987 * r
* * -,
* AUTHOR : Michael J. Zyda * 2,
\ * »
* DESC. : Contains routines machinepath and dJeletemachinepath for *
: * link creation/removal at a high level of abstraction. * '~
* *
* VERSION: 2.0 * - g
* * \
: * DATE ¢ 27 May 1987 * iy
- *
”
'_‘ * AUTHOR : Theodore H. Barrow * -
. * * LS
' * DESC. : Converted to use a structure for ease of use. * :;
‘4 * *
. . VERSION: 3.0 * -
. * .“
_ . DATE  : 21 October 1987 . R
- * -
- AUTHOR : Theodore H. Barrow * :
- - *
-
" * DESC. : Added function dynamicmachinepath to allow dynamic memory * .\
' A
82 R
y »
] S,
) -:'

C o

A

Y |
-
4

SNy P T Ay 0 g e T U 0 P T gy A SN T R -.'_x"\;r\}\}-."'\-}-)\{\J:.y a")t:'.r"'."\%”-ﬂ'l' AN _,.J-"_~‘,r“>" \
N » ~ - - " il - ) ' . ' v . a ~ . > - - &) il - il 4



€% §4% 0" Aatats® He®a tis"

w T W X

Lan g

h ot L 2 e e g

§
g A A
SRR A G

-

R TR PN TCM T Y

mpath.c
* allocation after communications link established. *
* *
* VERSION: 4.0 +
™ #*
. DATE : 15 December 1987 *
»* »
* AUTHOR : Theodore H. Barrow *
* *®
* DESC. : Added function dynamicmachinepaths to allow use with multiple *
* links. Modified al! creation routines to place sequence *
* aumbers at end of command line for send and receive processes.*
* *
* VERSION: 5.0 *
* *
* DATE : 31 May 1988 *
* »*
* AUTHOR : Theodore H. Barrow *
»* *
. DESC. : Added broadcast and receive capability - one process spawned *
Aok o ok sk ol ok o X o o ok o o e e e ke e o e o o e e e o e ol e R R ok o e die ok o i O o e ol o e o o ol o o ok e e o o o o i ok e ot ok ol ke e ok R K
* *
* RECORD OF CHANGES *
* *
*Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Vers*
A3 e ok ek e ol ke i ok ok ol ool e ofe ol ok ol o e o s e e ol e i ofe ol Ao e o ok ok ok kol ol o ol sl e i s ol ofe ok o o o ke o ol ol ol bk e ol e e ok ke ok ok
* * * * * * *
* * * * *

*tttt#Ql#*t*tllltl**tOl*#tt**##*#t***#***##t‘tt*t**#.*#*t*ﬁl***‘***#***#ﬂ#***‘****'l/

83

-~
Py —f‘:-f‘-:.l\',-‘;d‘{-f_;.'_'.-‘;.l\"{*;.'_; _‘;.-_;.-‘;.-N:-.-{\a‘_.’\_'\.:_‘."'.' ) _-.;.‘.‘\-‘ TR _’...'\-(__-‘ " *,r\-\:_‘u LT \..‘\. - A
A 5 - G ddt o add g O R » sl N o o ¢ oo Mo

»-1‘-:-...1.4' LTI R R N o) Sag vap ol _tal) daf _tal », ™y el Al "RV’

— &

0 e SIS T Rl Rl X R ol R’

-
e

LRV IPRAAL

227 L

SR N

ERR AV g I AT X
Lol O Y

17 RLALLE L

»_» -f"

)
s

4
¢



o gt gty Bt a0 00 a0 84 470 8 0 0% Ve oy -V, e o "R e e " e s " a2 a'e ath a¥h aleoeatst iy

-

NG

LN 8 4

mpath.c

#include "shared.h” /* my special defines */
#include <gl h>

L A

.
x,

deletemachinepath(instructure)

-
=

Machine *instructure; /* structure to hold segment and semaphore info:

char *instructure.segment -- returned ptr to the shared segment.

L >~ -

e

int instructure.shmid -- returned system generated shared mem id

ey

int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.

int instructure.receivesem -- the returned receive semaphore. '
We base it on the receive portnumber.
*/

.

PRI
v' « .
«

P

/* kill the receiver process. .. */
kill_receiver(instructure->segment,instructure->receivesem);

L LS

/* kill the sender process.. . */ j
kill_sender(instructure->segment . instructure->sendsem);

/* detach and deiete the shared segment .. */
deletesharedsegment(instructure->segment, instructure->shmid); !

N X

b

s

Y

'1:'1".1:1‘:! »

Sy e
v Te a
L

A Ay

P A
e
s

.

- S e

LI

L

NS

Y 4Ny

F2 AP
) s )

84

Lot

e

LR 4

+




I .8 a.‘\‘l‘l't"\."l."‘ o gt ¥ Jar g ti‘.‘l‘||".'. i 00 TN VN WU v ""O' >h ol ® \ N e P IALSA ¥2'4% ' §%a 1

/ll

*/

mpath.c

For airect connection, both senu and receive proces<es are spawned.
For broadcast, either send or receive process is spawned.
The machinepath routine performs the following:

(1) creates a shared segment.

(2) creates a send and/or receive semaphore based on the send and receive
port numbers.

(3) free_sender(segment) and/or free_receiver(segment)

(4) spawns off the send and/or receive processes.

system("send sharedseg# machinename port# server/client/broadcast 0&"):

system("receive sharedseg# machinename port# server/client/receive 0&"):
(5) the send and rececive semaphores, the pointer to the shared segment,

and the id of the shared segment are placed in a structure of type

Machine that is declared in the calling program.

machinepath(segmentnum,mname, sendportnum, receiveportnum,server,instructure)

long segmentnum; /* the key to use for the created shared segment */

char mname({]; /* machinename character string */

long sendportnum,receiveportnum; /* send and receive port numbers */

char server{]: /* this character string is either "client”, "server”,
"broadcast”, or "receive”. If direct connection wanted,

it indicates whether the sender/receiver should open
up as either a client or server. The first guy open

must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.
*/
Machine *instructure; /* structure to hold segment and semaphore info:

. char *instructure.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id
int instructure.sendsem -- the returned send semaphore.

We base it on the send portnumber.
int instructure.receivesem -- the returned receive semaphore.
./
‘ . .
char *sharedsegment(): /* shared segment creation function */
int semtran(); /* semaphore creating routine. */

char temp[200}., temp2[200]): /* temp character arrays */

/* create the shared segment */

instructure->segment = sharedsegment ( segmentnum MAXSHAREDSIZE &instructure->shmid):

/* create the send semaphore. (unused if receiving broadcast messages) */
instructure->sendsem = semtran(sendportnum):

/* create the receive semaphore (unused if broadcasting messages) */
instructure->receivesem = semtran{receiveportnum);

/* free the sender and receiver parts of the shared segment */
init_shared_buffer(instructure->segment):

/* spawn off the sender process */

if( stremp( server, “"receive"” ) != 0 )

85

il iy

{o

vie

L

]

»
«

s

A ('-

{':'

=

L A S RN

Yy

Mt R o

2"
@

X, 4y

b

?}J‘

< 1@

PR N
ol 2

»

&-é_.

)

L)

o

ey

.‘/4. Z%.

i

I
x

“

77,

7,

e

4

PNy

A

Y

Y h

ko



[ mpath.c
|

/* add the start of the line, i.e. the program to run */
strepy(temp, SEN)DOCATION)
strcat{temp,”" ");

/* add the number of the sharedsegment in text */
sprintf(temp2,"%d" . .instructure->shmid):
strcat(temp, temp2):

strcat(temp,"” "):

/* add on the machine name */
strcat(temp ,mname);
strcat(temp,” ");

/* add the port number */
sprintf(temp2,"%d", sendportaun);
strcat(temp, temp2).
strcat(temp,” ");

/* indicate whether a server, a client, or a broadcaster */
strcat(temp,server);
strcat(temp,” 0");

/* spawn off into the background */
strcat(temp,"&"):

/* spawn off the sender */

' if( system(temp) == -1 )
r perror("SE system call failed");
}

else

/* kill sender (which really doesn’'t exist anyway) so that the
sender_is_free() call will always return FALSE.
A similar thing does not have to be done for receiver_has_data()
in a broadcasting path since it will always return FALSE anyway */ ‘
kill_sender( instructure->segment, instructure->sendsem ); . l

/* spawn off the receiver process */
if( stremp( server, "broadcast" ) != 0 )

/* add the start of the line, i.e. the program to run */
strcpy(temp RECEIVELOCATION) ;
strcat(temp,” ");

/* add the number of the sharedsegment in text */
sprin.tf(temp2,"%d",instructure->shmid):
strcat(temp, temp2).

strcat(temp,” "):

/* add on the machine name */
strcat(temp ., mname)
gtrcat(temp.” ");

/* add the port number */
sprintf(temp2,"%d" receiveportnum);
strcat(temp, tempZ)

strcat(temp,” ")

/* indicate whether a server, a client, or a broadcast recetver */
strcat(temp,server);
strcat(temp,” 0");

/* spawn off into the background */
strcat(temp, "&");

30 &




RZY AN 0 MO W TOT PO O TR T A R VR W W WA O W T T SO A T R T R R R T

- w‘ir

F3
oA .

mpath.c

/* spawn off the receiver */
if( system(temp) == -1 )
perror ("RECEIVE system call failed"):

T W W N e WK

o e e e

[ T

£ O 89 v x

~
‘w
.
'™
al

87

A ARG (O TR CLLL A S R UL Y




A PR N

mpath.c

/’l

For direct connection, both send and receive processes are spawned.

For broadcast, either send or receive process is spawned,.

The dynamicmachinepath routine performs the following:

(1) creates a shared segment and attaches it to the main program virtual .
space after an allocation of free memory space.

(2) creates a send and/or receive semaphore based on the send and receive
port numbers.

(3) free_sender(segment) and/or free_receiver(segment)

(4) spawns off the send and/or receive processes. M
system("send sharedseg# machinename port# server/client/broadcast 0&"):
system("receive sharedseg# machinename port# server/client/receive 0&");

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared segment are placed in a structure of (ype
Machine that is declared in the calling program.

*/

dynamicmachinepath(segmentnum,mname,sendportnum,receiveportnum,server,
instructure, freespace)

long segmentnum: /* the key to use for the created shared segment */

char mname{]; /* machinename character string */

long sendportnum,receiveportnum: /* send and receive port numbers */

char server[]: /* this character string is either "client", "server"”,
"broadcast", or "receive"., If direct connection wanted,

it indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server. [If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

*/
Machine *instructure; /* structure to hold segment and semaphore info:
char *instructure.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id -
int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.
int instructure.receivesem -- the returned receive semaphore.
We base it on the receive portnumber.
*/
int freespace; /* amount of freespace desired for dynamic memory allocation
after this routine has been called. */
(
char *dynamicsharedsegment(); /* shared segment creation function */
int semtran(); /* semaphore creating routine. */ o
!
-~
char temp[200], temp2[200]: /* temp character arrays */ e
=)
<
/* create the shared segment */ -
instructure->segment = dynamicsharedsegment(1.segmentnum MAXSHAREDSIZE. !z
&instructure->shmid, freespace) Fo’
. S
~
/* create the send semaphore. (unused if receiving broadcast messages) */ 3\
instructure->sendsem = semtran{sendportnum): o
S
/* create the receive semaphore (unused if broadcasting messages) */ ::‘
instructure->receivesem = semtran(receiveportnum): -
@
o

88




T TR R R T O U L O O RN "0k el Nl ad Va8 Al Yy “d AR &% - Fyey

mpath.c

/* free the sender and receiver parts of the shared segment */
init_shared_buffer(instructure->segment);

/* spawn off the sender process */
if( stremp( server, "receive” ) != 0 )

/* add the start of the line, i.e. the program to run */
strcpy( temp, SENDLOCATION) ;
strcat(temp,” "),

/* add the number of the sharedsegment in text */
sprintf(temp2,"%d"”,instructure->shmid);
strcat(temp, temp2);

strcat(temp,” "):

/* add on the machine name */
strcat(temp.mname)
strcat(temp,” ")

/* add the port number */
sprintf(temp2,"%d", sendportnum);
strcat(temp, temp2);
strcat(temp,"” ")

/* indicate whether a server, a client, or a broadcaster */
strcat(temp,server);
strcat(temp,” O&");

/* spawn off the sender into the background */
if( system(temp) == -1 )
perror("SE system call failed”);
)

celse

/* kill sender (which really doesn’t exist anyway) so that the
sender_is_free() call will always return FALSE.
A similar thing does not have to be done for receiver_has_data()
in a broadcasting path since it will always return FALSE anyway */
kill_sender( instructure->segment, instructure->sendsem );

/* spawn off the receiver process */
if( stremp( server, "broadcast” ) != 0 )

/* add the start of the line, i.e. the program to run */
strcpy( temp . RECEIVELOCATION) ;
strcat(temp," "):

/* add the number of the sharedsegment in text */
sprintf(temp2,"%d” ,instructure->shmid);
strcat(temp.templ):

streat(temp,” ")

/* add on the machine name */
strcat(temp,mname);
strcat(temp,” ")

/* add the port number */
sprintf(temp2, "%d" . receiveportnum);
strcat(temp.temp2):

strcat(temp,” ");

/* indicate whether a server, a client, or a broadcast receiver */
strecat(temp,server);
strecat(temp,” O&");

89

_.
Joreld

o
X
3

»

A

ho Yo dv ot 13
'51' Pt >

x_n - i J

.

“Q)'

b
”

e

.
.

ey

o
X

1

g

)
“;‘*r'r-.—

W T ATt
i“‘.‘ » & Ve

ST
Sy

-

e

RS v'..’. oA, %
s "5 % na

CRSLEA ]
.

o
RS

)

.,».
Ao

L R

A

FrLL

S

- I'.I bl l.'l“_ .-.;‘l"‘.Y - - - * "'7 'f"ff o, - L] ! L . -
T P S T T TR T g A N T N L R Y TSR W P AR



R R AR W IO TR O AR R I N S Wl T W T VA AN LI Y aoh wad. S O

oA

] I EaX..

LT LY

L W N A

e L e o

mpath.c

/* spawn off the receiver into the background */
if( system(temp) == -1 )
perror( "RECEIVE system call failed");

90

S W Y

%230

AN S

fy'a"2"0%a"

=GP

-
-

R R I e 4

™

" !‘(-( 'rr.

LIS o g |

P

D
:
.
v,



PSR O PO PO O TR

[} Y
OGO s

S TR TS N O T oo s W 0, a8 Salatal o Ual G Sud Ua @ Sal Al B o) St~

mpath.c
/ »

For direct connection. both send and receive processes are spawned.
For broadcast, either send or receive process is spawned.
The dynamicmachinepaths routine performs the following:

(1) creates a shared segment large enough for multiple attachments
and attaches it to the main program virtual space after an allocation
of free memory space.

(2) creates a send and/or receive semaphore based on the send and receive
port numbers.

(3) free_sender(segment) and/or free_receiver(segment)

(4) spawns off the send and/or receive processes.
system("send sharedseg# machinename port# server/client/broadcast 0&");
system("receive sharedseg# machinename port# server/client/receive 0&"):

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared segment are placed in a structure of type
Machine that is declared in the calling program.

*/

dynamicmachinepaths(nummachines, segmentnum,mname,sendportnum,receiveportnum,
server,instructure,freespace)

int nunmachines; /* the maximum number of other machines to be attached */

long segmentnum: /* the key to use for the created shared segment */

char mname([]: /* machinename character string */

long sendportnum,receiveportnum; /* send and receive port numbers */

char server(]: /* this character string is either "client", "server",
"broadcast”, or "receive”. If direct connection wanted,

it indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

*f
Machine *instructure;: /* structure to hold segment and semaphore info:
char *instructure.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id
int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.
int instructure.receivesem -- the returned receive semaphore.
We base it on the receive portnumber.
*/
int freespace; /* amount of freespace desired for dynamic memory allocation
after this routine has been calied. */
{
char *dynamicsharedsegment(): /* shared segment creation function */
int semtran(): /* semaphore creating routine. */
char temp[200]., temp2{200]; /* temp character arrays */

static Boolean firsttime = TRUE; /* flag to detect multiple requests */
static int sequencenum = 0; /* sequence number for receive/send */
static int totmachipes: /* max attachments permitted */

/* check for first time called and establish max possible attachments */
if( firsttime )

91

LTSRS N N LS s W W e VR W g W R WA B L W o L WA R L A R W W W MR L e T LV L L T R S T AT LT
B o o 2 o o R Lt o ".‘. Lo o LN, RhT G P

» e W0, v W00 Py 8% B9 . 9. W%8..

e

Mt

LA E RN

L
3

L -

A f N
.

K

=

E LI I

P s

e T T b AU b ol
B Bl ol K . "

L IR

T,

LEEIS LD

A g SN

P I R

|

<



bosrsiocriatacns

mpath.c

nummachines;

FALSE:

totmachines
firsttime

}
clse
++sequencenum;

/* check for violation of maximum attachments */
i1f( sequencenum >= totmachines )

{
perror(“mpath: Too many attachments attempted”);
exit( -1 ).
)
/* create the shared segment */
instructure->segment = dynamicsharedsegment(nummachines, segmentnum,

MAXSHAREDSIZE .

&instructure->shmid, freespace);

/* create the send semaphore. (unused if receiving broadcast messages) */
instructure->sendsem = semtran(sendportnum);

/* create the receive semaphore (unused if broadcasting messages) */
instructure->teceivesem = sqn(rnn(receiveportnum):

/* free the sender and receiver parts of the shared segment */
init_shared_buffer(instructure->segment);

/* spawn off the sender process */

if( stremp( server, "receive” ) != 0 )

{
/* add the start of the line, i.e. the program to run */
strcpy( temp, SENDLOCATION) ;
strcat(temp,” ");
/* add the number of the sharedsegment 1n text */
sprintf(temp2,"%d"  instructure->shmid):
strcat(temp, temp2);
strcat(temp.” "):
/* add on the machine name */
streat(lemp , mname)
strcat(temp,” ")
/* add the port number */
sprintf(temp2,"%d", sendportnum);
strcat(temp, templ);
strecat(temp,” ")
/* indicate whether a server, a client, or a broadcaster */
strecat(temp,server);
streat(temp,” ")
/* add the machine sequence number */
sprintf(temp2,"%d”  sequencenum) ;
streat(temp, temp2)
/* <pawn off into the background */
streat(temp,"&"):
/* spawn off the sender */
if( system(temp) == -1 )
perror("SE system call failed”):
|
clse

/* kill sender (which reallv doesn’t exist anyway) so that the

92




gt ot a¥ a8 1a% Ua¥ ¥ ga® ¥ut fav uNE st aTh abd av4_g" R 176 0 6,0 008 §.4°0,8 "ot Yad Paf (a0 Nat Vah . ) oop oy Satoal,'nd tado* TUWTWLW

mpath.c

sender_is_free() cail will always 1eturn FALSE.

A similar thing does not have to be done for recetver_has_data()

in a broadcasting path since it will always return FALSE anyway */
kill_sender( instructure->segment, instructure->sendsem ):

/* spawn off the receiver process */

if( stremp( server, "broadcast” ) != 0 )

{
/* add the start of the line, i.e. the program to run */
strepy(temp, RECEIVE..OCATIQ\I)
strcat(temp." ")

/* add the number of the sharedsegment in text */
sprintf(temp2,"%d” , instructure->shmid);
strcat(temp, temp2);

) strcat(temp,” ");

/* add on the machine name */
strcat(temp.mname) ;
strcat(temp,” ");

/* add the port number */
sprintf(temp2,"%d" receiveportnum);
I strcat(temp, temp2);

strcat{temp," "):

/* indicate whether a server, a client, or a broadcast receiver */
strcat(temp,server);
strcat(temp,” ");

/* add the machine sequence number */
1prxntt‘(temp2 "%d" ,sequencenum) ;
. strcat(temp, temp2);

/* spawn off into the background */
strcai{temp, "&");

/* spawn off the receiver */
if( system(temp) == -1 )
perror("RECEIVE system call failed"):

93

-, - A
-_-.- i)

A o

b it o AT ¢ "'""'"""~.' NN R S A S S
185 35007 ¥ PN, SO W .- > MRy L.L‘ -X-l.(-{lx.M;z’.ﬂ-"{'--\‘ P AT AT S IS




o A RV Yot T uTe w” R 8RBy B BN Ty TWTER VR VT W R T R XA TR S " W WA

T Y TTEE NN T

3. netV.c

a. Calling Protocols

This module contains the low-level socket-managing calls. No functions in
this module are intended for application programs. This module is only linked into the

send and receive processes.

b. Code and Description

LEE EE EELER ER SRS EE SRR R 2R 2 R RS R R R R R R RS R R RS R RS R R SRR R R R RS E R RS E R R EE R L NN
TITLE : Inter-Computer Communication Package
MODULE : netV.c
VERSION: 5.0
DATE : 31 May 1988
AUTHOR : Theodore H. Barrow

LA EEE R ERER R R R R R R R R R R R R R R Rl R R R R R R R R b R Al R R A i R R R R R R R R R R RN

/
* -
L] L]
* *
* »
- *
* -
® *
* *
- *
* »
* *
- *
* *
* HISTORY: »
» *
* VERSION: 1.0 *
* *
* DATE : 19 November 1986 *
* .
* AUTHOR : Michael J. Zyda *
» >
* DESC. : Contains routines connect_server and connect_client to allow *
* two machines with Unix System V to communicate via sockets. *
. * -
* VERSION: 2.0 *
- *
* DATE : 29 April 1987 *
L] L
* AUTHOR : Michael J. Zyda *
* *
> DESC. : Converted to work with 4.2BSD sockets. *
- *
- VERSION: 3.0 *
* *
* DATE : 27 May 1987 *
» *
* AUTHOR : Theodore H. Barrow *
* *
* DESC. : Eliminated excess variables, some unused and some unnecessary.*
- *
* VERSION: 4.0 *
” *
* DATE : 21 August 1987 *
” *
* AUTHOR : Theodore H. Barrow *
» *
* DESC. : Improved reliability of socket connection and disconnection. *
* *
* VERSION: 5.0 *
* *
* DATE : 31 May 1988 *
94
B T T T e e T A B e T R Y

S s

-
ot

AN A T B A S S Ny

ay- ,l'}'.',_":::-’ - -

3 ]

¥ 9

4

'

SN IARE A A RAL



it tn atatate’at2 100 a0

~ .

e

- Peiw w o m

N N N AN D

I‘.'I‘O 0" .' A o
netV.c
* *
* AUTHOR : Theodore H. Barrow *
- *
* DESC. : Added start_broadcast() and broadcast_receive() to provide *
* datagram sockets for broadcast use. These sockets use the *
* default Internet broadcast addressing. *
LEE RS EEE RS SRR RS R R S R R R R R R R R R R R R R R R R E R R R R R R R E R RS R
- -
* RECORD OF CHANGES *
L *
*Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Vers*
LR R AR AL SRR R R R R R AR R R RS R R R R R R R R R R R R R R R 2SR R R R R R R R R R R R R R R R R R NN
* 4.1 * 4Jan88 * T. H. Barrow * * gend.c *4.0 *
* . Changed include library pathnames for IRIS 4D.* receive.c *4.0 *
LA R R RS R AR RS R R AR R R ERSER SR R R Rt R R R R R R R i iR AR R E RS R R R AR LR 2
- * * * * - L
* * * * *

t#‘#t#.‘!t*ttttt‘##!ttt‘tt!t##t!‘t#*ﬁ‘ttt#t#tt‘t‘.#mt!!“‘t#tt‘t"t‘t-tt‘ttt'/

95

A Sy

AT AR

ALY

L Y




S S N YW I I 3% M Y Y™ W e NN KKK

netV.c

/!

This segment, when linked into a program on a computer with a UNIX 4.2 BSD
operating system, will allow the program to communicate with programs
executing on other computer systems over an Internet network.

*/
#define TRUE 1

/* include files for UNIX 4.2 BSD. These are all called from the bsd
subdirectory in /usr/include. The file sys/types.h also exists and is
incfuded when bsd/sys/types.h is used. This was done for ease of change .
if and when Silicon Graphics changes the include library structure. */

ffinclude <sys/types.h>

#include <sys/socket.h>

#include <bsd/netinet/in.h>

#include <bsd/netdb.h>

/*tt#****t**#‘ltt*‘*#*t#t‘t‘t##t***t**##**#t****t##*#*‘t*####‘

s .

53

The connect_server(remote_client_name, port_number) function performs

the actions required to connect a server system to a remote client system o
##‘t*‘ﬂ*'*ﬁ*t#*'**#‘##*“*.!ﬁ*t‘tt**‘ﬁt.‘**!*‘#********#‘ﬁ‘t/ \
:'
ol

int connect_server(remote_client_name, port_number) t:,(
ol
char remote_client_name[]; /* name of the remote client system */ P
[ J

int port_number; /* port number to the remote client system */ “r
-

-

‘ . : : <
char *ptr_client_name; /* pointer to the remote client system’s name */ Ly
-.'}'-

int local_server_socket; /* local socket number */ S

"

e

int socket(): /* function that opens a socket */ - !
. . . o
int accept(): /* function that accepts a connection from s

a remote client socket */ Y

. &

int remote_client_socket = -1; /* socket number of remote client system */

/* protocol and address data structure for socket */

static struct sockaddr_in address = { AF_INET }; ]
=
long remote_client_address: /* address of the remote client system */ N
L)
short remote_client_port; /* port number of the remote client system */ :_.\
..
int address_size; /* size of address of remote client system */ :."'
e
/* create socket structure from input parameters */ N
S
/* get a pointer to the remote client sysitem’'s name */ .
ptr_client_name = remote_client_name: A
h'l:'-’
/* convert the remote client system name to its address. St
Note that gethostbyname() requires a pointer to a pointer */ Rdh
remote _client_address = (long)gethostbyname(&ptr_client_name); [ )
ey
!
/* set the remote client port number above the system reserved ports ':.'.
by adding the remote client port number to the number of reserved ports */ A
remote_client_port = [PPORT_RESERVED + port_number: K
.N..
/* remote client system address family (Internet in this case) */ ; .'v-:.
address.sin_family = AF_INET . S
o

-

96

T

PN BT SO B AI Y SNSRI I DI IE SIS I SIS,

B s




)

netV.c

/* place the remote client port number into the address data structure
in network byte order */
address.sin_port = htons(remote_client_port):

/* place the remote client system's address in the address data structure */
address.sin_addr.s_addr = remote_client_address;

/* find number of bytes in the remote client address */
address_size = sizeof(remote_client_address);

/* attempt to open a local socket */
local_server_socket = socket (AF_INET,SOCK_STREAM,0) ;

if(local_server_socket < 0)
perror("Server couldn’t open a local socket:"):
else

if(bind(local_server_socket, (caddr_t)&address, sizeof(address)) < 0)
perror("Server couldn’'t bind address to local socket:");

/* set the maximum number of remote client systems to be connected to */

listen(local_server_socket , SOMAXCONN) :
printf("Server waiting to connect to %s\n",remote_client_name);

/* attempt to accept a comnection */
remote_client_socket = accept(local_server_socket, &address,
&address_size);

if(remote_client_socket < 0)

{
/* an error occurred in the server attempting to
accept a connection from remote client system */
perror("Server couldn't accept connection from remote client system:");

shutdown(local_server_socket, 2);

close(local_server_socket);

}
/* else the server accepted a connection from the remote client system */
}

/* return the socket number of the remote client system */
return(remote_client_socket);

/* connect_server */

97

RIS €40 0 4000 AN AICA'NG oFMSIC SICY S A VAL QUSSR IS o S aia e g b B Rt et 1B 200 S8 By 020 8

'---‘J_\ -"--;’--.""{-"‘.-f'\,.\f"r.‘f‘h.\f--..‘.-'\{.‘.‘-'ffb.'f‘.f:‘f..-".-..‘f‘--{.—f\‘-:-f-.d'..f:-’.‘J‘q'-‘.‘ff‘f‘f\ )

3 7. yra-..{f

R WV
-

;:;5

o

AP
e e S

AR
TN

-'(l“ s,

LA

SR

<

o

"-;x{‘n}. :

1 §
R

PIL ESACEERY. I
25 DRI y

LA el ?Zf'él

.

b
%



R R - et Pa? * §a2° fat_ * pat
=‘.*s~~.~“0~¢- [CPARC TR IO T34 "v,' > U TN TAN TOR 1o v dat 4% Pe”. 02 Je® 02" 10,00 0" & gV v a0 fad ot S a% ha¥ 4 \d LT 0 a2ty

Mg M MO0 R Wy MWy Wy - Mw WA MLy W - W » ¥ u -y W ¥y O, W™ - 'l
! !
"
‘o
1
’
netV.c )
'.
/*#t.‘*‘#'#*t#‘**‘**‘t‘*‘*‘*#*!!t‘#t#**#tt‘ttttt****'*t‘#*#* r
'
[]
The connect_client(remote_server_name, port_number) function performs e,
all the actions required to connect a client system to a remote server 4
syslem )
\
ﬁ*‘#tttttt#t*t*‘ﬂ***‘t***‘**t#**t**#*t**t#**t**#t**t**!**t*/ ° "
{
int connect_client(remote_server_name, port_number) 3
- §ot
char remote_server_name[]; /* name of the remote server system */ .
int port_number; /* port number to the remote server system */ .
)
' ) ) -
int local_client_socket: /* local socket number */ :
¢
. . »
int socket(); /* function that opens a socket */ ,
/* function that connects local socket to remote server socket */ 1
int connect(); :
int remote_server_socket; /* socket number on remote server system */ if
-
/* the protocol and address data structure specified for the socket */ :{
static struct sockaddr_in address = { AF_INET }; ”
o
struct hostent *remote_server_address; /* address of remote server system */ ]
kS
short remote_server_port; /* port number of remote system */ .
.
. ~3
/* create socket structure from input parameters */ ;
/* convert the remote server system name to its address. }
Note that gethostbyname() requires a pointer only in this case */ )
remote_server_address = gethostbyname(remote_server_name); ﬂ‘
-
/* clear out the address structure */ - -
bzero((char *)&address, sizeof(address)): N
A
/* copy the remote server address structure into the address structure */ Bl
bcopy(remote_server_address->h_addr, |
(char *)&address.sin_addr, A
remote_server_address->h_length); o~
\
.
/* set remote server port number above the system reserved ports by adding :'
the user’'s remote server port number to the number of reserved ports */ .
remote_server_port = IPPORT_RESERVED + port_number . "
S
/* remote server system address family(Internet in this case) */ )

address.sin_family = AF_INET;

oo

. n "
/* place the remote server port number into the address structure W
in network byte order */ Py,
address.sin_port = htons(remote_server_port); ;(
r 1
/* attempt to obtain a local socket */ Lh
i local_client_socket = socket(AF_INET, SOCK_STREAM, 0): )
d if(local_client_socket < 0) - 5:
t perror(“Client couldn’t open a local socket:"): ’
else ’
3 { Ji
3 /* place Internet address family type in address structure */ -
address.sin_family = AF_INET: >
'
b
98 >
\
N
N
\ i
)
N
~
. X
. W e




. R w

-

o

- e e

)

3 a8 0N §0 dab Fa¥ WaT NL’ oY ote” Ve iy RSOV US L RS R RS | - WY WA I TN N OV VTV s N Y AT N T AV AT SR PR RPN E P T F T

netV.c

/* attempt to connect local client socket to remote server socket */
remote_server_socket = connect(local_client_socket, (caddr_t)&kaddress,
sizeof(address)):

if(remote_server_socket < 0)

/* error occurred in attempting to connect to remote server socket */
perror("Client couldn't connect to the remote server socket:"):

shutdown(local_client_socket, 2);
close(local_client_socket):

/* set local_client_socket so that negative value is

always returned when an error occurs
»*

local_client_socket = remote_server_socket:

else
/* successfully connected to the remote server system */
printf("“"Connection established with %s.\n" , remote_server_name);

)

/* return the socket number of the local client system */
return(local_client_socket);

) /* connect_client */

99

A g A A TN e o a7 B A S o £ NN D BT P ot N 1




W R Ry L1 UL VLA TR TR T LTI RN, AN RN TR R Tk " u N a Ta My TV N L T W g [altala o dre Lt M N LY ol WRLY

netV.c

/#t##ttt#tt****#t***‘*‘###t#t#t***i*“!**t#*##‘*tt*tt*###*ttt

The start_broadcast(port_number) function performs
the actions required to initiate a datagram broadcast socket.

t**t*ttt*t*t**t't*t*#***t********t*****t**#ﬁ##*#**t**tt***t‘/

int start_broadcast(port_number)

int port_number; /* port number for the remote receiver system */ .
{

int broadcast_socket; /* local socket number */

int socket(): /* function that opens a socket */

int setsockopt(): /* function that sets a socket to allow broadcast */

int on = TRUE: /* to set broadcast toggle on for socket */

/* protocol and address data structure for socket */

static struct sockaddr_in address = { AF_INET }:

short broadcast_port; /* port number broadcast heard from */

/* create local socket structure from input parameters */

/* set the broadcast port number above the system reserved ports
by adding the broadcast port number to the number of reserved ports */
broadcast_port = IPPORT_RESERVED + port_number;

/* system address family (Internet in this case) */
address.sin_family = AF_INET ;

/* place the port number into the address data structure -
in network byte order */
address.sin_port = htons(broadcast_port);

/* place the local address in the address data structure .
in network byte order */
address.sin_addr.s_addr = htonl|(INADDR_ANY);

/* attempt to open a local socket */
broadcast_socket = socket (AF_INET,SOCK_DGRAM,0) ;

if(broadcast_socket < 0)
perror(”"Broadcaster couldn’t open a local socket:");
else
{
/* set the broadcast_socket for broadcasting */
if(setsockopt( broadcast_socket, SOL_SOCKET, SO_BROADCAST,
&on, sizeof(on) ) < 0)
perror("Broadcaster couldn’t set socket to broadcast:");

else if(bind( broadcast_socket, (struct sockaddr *)&address,
sizeof(address) ) < 0)
perror("Broadcaster couldn't bind to local socket:"):
else

|
]
/* return the socket number */
return(broadcast_socket):

printf(“Waiting to broadcast\n");

} /* start_broadcast */

100

R @ e

¥

W EREEL S

Aot

X X

b

<

® 5 T

o

BTG A

Y %

’

Y i ok o I
¥ .'*ﬂ

“g.' ’Q'.,\: .-' i

-

x

LTI

£ s
- %
0

[y
YN

e

L J;p .;'XQQ'.



|
|

R OESPAD L bt G Ad GG EAE GRS CREE GEANLELEAL Sl Ad Sl S AR R Al A

o

netV.c

i A

~—

/##tttt#t#*"#‘#**t-#“*tt#‘*#**t#ﬁ#tt*tt“ltt“#ttﬁ!t!‘tﬁtt ﬁf

—
u
L3

The broadcast_receive(broadcaster_name.port_number) function performs
all the actions required to set up a broadcast receiving socket

###t*t*t**###*t*****t**t#t*t’#*tttt#t#*#t****t*t#t*#**#**“/

int broadcast_receive(broadcaster_name,port_number)

P e |

char broadcaster_name[]: /* name of the broadcaster system */
int port_number; /* port number for the broadcaster */ o
.'.
{ et
int local_socket; /* local socket number */ \
- .
int socket(); /* function that opens a socket */ A
]
int broadcaster_socket; /* socket number on broadcaster system */ »
/* the protocol and address data structure sgecified for the socket */ W
static struct sockaddr_in address = | AF_I }: %
gLt
struct hostent *broadcaster_address; /* address of broadcaster system */ -:i
short broadcaster_port; /* port number of remote system */ o)
/* create socket structure from input parameters */ \:
LY
/* convert the broadcaster system name to its address. "
Note that gethostbyname() requires a pointer only in this case */
L "oadcaster_address = gethostbyname(broadcaster_name);
*
/* clear out the address structure */ »
bzero((char *)&address, sizeof(address)); -
/* copy the broadcaster address structure into the address structure */ )
bcopy(broadcaster_address->h_addr,
(char *)&address.sin_addr, .
broadcaster_address->h_length);
a4 ]
/* set broadcaster port number above the system reserved ports by adding
the user’s broadcaster port number to the number of reserved ports */ b
broadcaster_port = IPPORT_RESERVED + port_number; r:,
o
/* broadcaster system address family(Internet in this case) */ ’2-
address.sin_family = AF_INET: jh”
&N
/* place the broadcaster port number into the address structure -
in network byte order */ -
address.sin_port = htons(broadcaster_port); Q y
>
/* attempt to obtain a local socket */ v
local_socket = socket (AF_INET, SOCK_DGRAM, 0): K
if(local_socket < 0) "
[ L
perror("Receiver couldn't open a local socket:"): ay
} ‘N
else )
{ S
/* attempt to connect local socket to broadcaster socket */ L))
broadcaster_socket = connect(local_socket, (struct sockaddr *)&address, }?’
sizeof(address)); »
B!
Byt
101 o
l‘.
(
ay
(0
. cl
N
N

; ALY T T ] Cmo e Ty e T e LS N 5 " - o v - ( ':
N e e T e . L A e oy e D e e Y X e N NN A



VIR PR T F AT R I E N AR E P8 F TP T TTIW,

netV.c

if(broadcaster_socket < 0)

{
/* error occurred in attempting to insert broadcaster information */
perror(“Receiver couldn't find broadcaster:");

shutdown(local_socket, 2);
close(local_socket):

/* set local_socket so that negative value is
always returned when an error occurs
t/ -
local_socket = broadcaster_socket;
]
else

/* successfully listening to the broadcaster system */
printf(“"ready to receive from %s.\n" ,broadcaster_name);

)

/* return the socket number of the local system */
return(local_socket);

} /* broadcast_receive */

102

Lt O P fa XN RN R R S

-
-

25

. Y
.;.I.‘I Ld

4

., '\“'l "l- S e

)

‘f{ ‘ﬂ{'

T

5

Frrlliw

%



“

(]

RN R

8

“aty sl g - g ate‘athéat Tl ¥, IR R T"ENRY LA At SR S h tat n ¥ 0 ) L " ‘.0 0. e’ a’t 20 a'b avs

4. receive.c

a. Calling Protocols

This program monitors a socket, like a daemon. It is spawned transparently to
the user and receives its initialization data through the command line.

b. Code and Description

/#‘.‘ﬁ‘t#*t#‘*‘.ﬁ‘#t‘ﬁ‘*“‘t“#*t*.tt“ttt‘ﬁt*.“*‘#‘t"t‘ﬁt‘ttﬁ““ttﬁt#tt#tt
* »
* TITLE : Inter-Computer Communication Package *
* *
* MXIULE : receive.c »
* *
* VERSION: 3.0 *
£ =
* DATE : 31 May 1988 *
* *
* AUTHOR : Theodore H. Barrow *
* *
AR EREEEERRER SRR SRR R R R R R i R R R s s i b R R R A R R AR R R R R R R R A s R R s i s s i R R R D
d *
*  HISTORY *
» *
* VERSION: 1.0 *
* *
* DATE : 6 February 1987 *
L *
* AUTHOR : Michael J. Zyda *
» *
- DESC. : Background process to receive messages over link. *
L *
* VERSION: 2.0 *
* -
* DATE : 15 December 1987 *
£ *
* AUTHOR : Theodore H. Barrow *
* *
* DESC. : Added capability to get sequence number from conmand line *
* and use it to get offset into shared memory segment. *
] *
* VERSION: 3.0 .
* *
* DATE : 31 May 1988 *
* *
* AUTHOR : Theodore H. Barrow *
* *
* DESC. : Added broadcast receive capability *
LEAE A AL R LR EASE LR AR LSRR R Rl RSN SRR R Rl Rl Rt AR R Rl A i AR R R R R
* *
* RECORD OF CHANGES *

*
*Version* Date * Author * * Affected *Reqd*
* . Change Description *  Modules *Vers*
e e o o e e e e e ol e i ol e e e e e e e e e e e e e o o o e o e o o e ol o e o e e ke e o e e e e ke e ek ko ke
L * * * * - *
» * * L] *

ttttttttttt*#ti#*#tttt‘tt‘#*ttttt“t‘#‘#‘tt‘tttttt#ttt“ttttt#tt#t#‘ttttttttt/

103

t
-
o e T

-

2

T N R T

o ooy
DO A

3

'l’_i}‘r. )
c

S St

LN e

el

VLALLSINT®

2
-

P

(o

ha

o U U, . LY L PRI SVL I RS N L LR n L RN Rt LTy [ Tt T Y R Nt Rt L L L LN R LT LR LRV
‘l.ﬂl'- PO MK WA N M M R e MM MO WM O iy -- M MSCANA Undt wb s u'. WS " 'r J‘V‘J‘ -I‘ ’J‘ 3 i 2., !- N A J



#include "shared.h"
#include "gl.h"

main(argc,argv)

int argc: /* argument

char *argv([]:

receive.c

count */

/* pointers to the passed in arguments */

/* we need to declare character variables for everything passed in */

char
int
char

int

shmidstr[10}:
shmid;
*segment ;

receivesem;

/* shared segment string holding the integer key*/
/* integer pulled out of the string */
/* character pointer to the shared segment */

/* receive semaphore */

char *sharedsegment();/* create shared segment function */

char
char
long
char
char
long
int
int
itnt
int
int
int

int

/* pull out

if(a
{
P

mname [ 100] ;
portstr[10]:
portnum:
server[10];
seqnostr[10]:
sequencenum = 0;
socket;
connect_server():

connect_client():

/* machine name */

/* port number string */

/* port number pulled from the string */

/* server string */

/* sequence # string holding integer sequence # */
/* integer pulled out of the string (default 0) */

/* the opened socket descriptor */

broadcast_receive();

receiver_is_free(

)

receiver_should_die();

se. an():

rge < 5)

/* semaphore creation routine. */

the strings from the argument list */

rint f("RECEIVE: incorrect argument count!\n"):
exit{ly:

/* puli out the shared memory string */
strepy(shmidstr,argv(

sscanf(shmidstr

1]):

"%d” (&shmid)

/* pull out the machinename string */
strcpy(mname ,argv([2]):

/* pull out the port number string */
strecpy(portstr,argv(3]);
sscanf(portstr,"%d" ,&portnum) ;

O T X RN

AR NIV

104

T T

-,

5

IS e et A

.
o

"'& - o

e BV 50




receive.c

/* create the receive semaphore */
receivesem = semtran(portnum):

/* pull out the client/server string */
strcpy(server,argvi{4]):

/* pull out the sequence number string */
if( arge > 4 )
{
strcpy(seqnostr,argv(5]);
sscanf(seqnostr,"%d" ,&sequencenum) ;

)

/* attach to the shared memory segment */
if((int)(segment = (char *)shmat(shmid, 0, 0666)) < 0)

{
perror ( "RECEIVE: shmat”);
exit(0);

)

/* create the shared segment address to use */
segment += sequencenum * MAXSHAREDSIZE;

/* open the socket connection to the named machine */
if(strecmp(server, "server") == 0)

/* we should open as the server */
socket = connect_server (mname,portnum);

else if(strcmp(server,”"receive”) == 0)

/* we should open as the broadcast receiver*/
socket = broadcast_receive(mname,portnum);

)

else

/* we should open as a client */
socket = connect_client(mname,portnum);

]

/* check to make sure socket was opened, exit if not */
if(socket < 0)

{
print f("RECEIVE: socket connection NOT made!\n");

exit(l);
/* the infinite loop... */
if(strcmp(server,”"receive”) == 0)
while(TRUE)

{

/* should the receiver die??? */

if(receiver_should_die(segment ,receivesem))

{
/* exit after detaching shared segment and cleaning up socket */
detachsharedsegment(segment);
shutdown(socket, 0);
close(socket);
exit(0);

]

/* if the receiver part of the segment is free, read onto it */
if(receiver_is_free(scgment))

/* check socket and read into segment if proper message */
if(broadcast_into_segment(socket,segment ,mname,portnum) > 0)

105

AT \?'!\ \l’t""'t o \.. ! . N

N N Y N W YUY UV SO O WS USSP L LSOOI WO WO W U R

-'\.\\

\\\".\

=
MO

LARALN -

2 2 -

O

-

-

LTl

X TR SS A

*
-

R g S R A L b
- - R

W,

B

+ Rnglibog % J s J

-
- -

S

0y

S St~

1% wiarn

i R LIRS

=
&L

-~ -
-
ra

'.’(‘
A 8, 1,



00t Gt Rat *0ad (0070 AP W VeC 7 Vo 0¥ aN e 1AL Tal tal o ke el dag Wy T el €0 60 e 0 0 L8 0 . 20 0'0 0’0 a%h 2%

rereive.c

{ . . .

/* at this point, sleep unt.l we receive a signa! from the
graphics program that the receiver segment is free, i.e.
the data has been read out */

P(receivesem);

}

]
} /* end while true for broadcasting*/
else
while(TRUE)
{

/* should the receiver die??? */

if(receiver_should_die(segment,receivesem))

{

/* exit after detaching shared segment and cleaning up socket

detachsharedsegment (segment);

shutdown(socket, 0);

close(socket);

exit(v);

}

/* if the receiver part of the segment is free, read onto it */

if(receiver_is_free(segment))

{

/* read socket into segment */

read_socket_into_segment(socket,segment);

}

/* at this point, sleep until we receive a signal from the
graphics program that the receiver segment is free, i.c.
the data has been read out */

P(receivesem);

} /* end while true for direct connections*/

106

*/

OO 'r"

LS

x I g
x
S

»

e mga s
\',_l:,,‘l..,'& Ay ‘:v 5

.l“

W N =&

-

SR LA O

Ca! A

KSRy g
o

.
-

LIS
"5”'! 5 % 5o 4




MR 00S RS 00" U™ Jiatalat fa® ' UaR Rat Vot ty Y o0yt JiaS Ben ot s SaS et 810 S Se' Bat Wt b0yt b At Rt b

7

-l

[R5 ¥ ¢ o2
PrE B

5. semaphore.c

28

a. Calling Protocols

g ]
clachy

This module repackages the low-level semaphore calls into a P and a V

o

semaphore operation. No functions in this module are intended for application programs.

,-
% S

b. Code and Description

BERREERERNRRRR AR RS RRE RN ERRRE R RN R TR RN R B R R R RN R R R R R R RN R RN RN RN RN RN RN R

Fr

TITLE : Inter-Computer Communication Package E
MXIULE : send.c Y,
VERSION: 1.0 :
DATE : 11 February 1987 :-:
LS

AUTHOR : Michael J. Zyda

Ao o sl ol e ol ol e o e e ol i o e o e o e i o ok s e e e e ol o o e o e ofe ol ol e e e e e e e sl e e o e ol e o ol o e ol o o ok o ok i o o o

ROt

LR B E B S R R AR R Sk AR SR R N B R K S R R

:
-
-
-
-
-
-
-
-
»
*
»
*
»
-
*
»
-
*
»
*
»
»
-
”
-
»

HISTORY:

.
-‘4-

VERSION: 1.0 -~
h"
DATE : 11 February (987 ':"..\-

.

, -
AUTHOR : Michael J. Zyda )

o)

Lt

. DESC. : Implements P and V semaphore operations for Unix system V. ®
Based on an examgle from Advanced Unix Progranming. F
R S L L T T T T T P TP 3
= A
RECORD OF (CHANGES * ey

-

* .‘."1

*Version* Date * Author * * Affected *Reqd* o’
* * Change Description * Modules *Vers* ..
LA E S A R RS RS R SRR R R R R R R A R R R R R R R 2R R R AR s R RS R R R R R R R R R R s R R R R R0 R N} .
. L - " * . * - :i‘[.‘
. . * » * oy
.ﬁ#“"‘.‘*'#‘#'#ttlt““‘**"ﬁ‘ﬁ‘tt‘**#tt##l“‘*ﬁ#ﬂ'*"*t*‘#“‘****t##*##*‘**/ -“‘
LA

(3

.

g oo §
(el

2%

‘e

2

XA

P r
0 ,é}. &g

:;‘ :;f-_' -,

.\,‘l .

107

kT
e
TR

NIRRT I " N A = by L) L PR L A AR L ..'-\v\-" ~ a0 A rN
NORORDRERRS ST S A STt A i A A A RO A PRI



R AR TR KRR XXAU VaB ¥ Bl Uul Fal et tad a1 na val el ‘gl et " gta st 8% 000 i e 0% 8% 0% 8", g

e

R

]

o0 semaphore.c

4

ot

Q:‘ #include <sys/types.h>

80 #include <sys/ipc.h>

:l‘ #include <sys/sem.h>

¢ int semtran(key) /* translate semaphore key to ID */
ar int key:

¢ o

:'. int sid:

\)

i"\' if ((sid = semget((key_t)key,1,0666! IPC_CREAT)) == -1)
W {

:‘_!t perror("semget");

,‘.; return(sid);

P static void semcall(sid,op) /* call semop */
int sid;
. int op:
,:'o {
E)
’:" struct sembuf sb:
O
l" sb.sem_num = 0;
:é sb.sem_op = op:
-4 sb.sem_flg = 0;
'4 if(semop(sid. &sb,1) == -1)
ot (
::: perror("semop");
)
()
w !
o
‘\ void P(sid) /* acquire semaphore */
ﬁ: int sid;
4 {
" semcall(sid, -1);
- }
o
.,o'
\ void V(sid) /* release semaphore */
. int sid:
‘ {
semcall(sid, 1);
}
b
"
3
2
‘.\
%
e
K
A 108
"
)
)
i
W

«,

R

A T R A S S AL A R L \‘,\‘-.'\’ C N N
A - "' LY L) » -



ol
4
3
6. send.c e
‘ o V¥
| 1
} a. Calling Protocols
\ N :::{
This program monitors a socket, like a daemon. It is spawned transparently to b
¢
the user and receives its initialization data through the command line. =
>
b.  Code and Description
r
/‘l““'..lt"*““.“‘ﬁ#‘.‘.‘.l“"!lﬁ"‘t““‘.“#l“""!"t“t*.“#!tttt‘ﬁ /‘:‘Il
* * =
* TITLE : Inter-Computer Communication Package * -
. . Y
* MODULE : send.c . A
» * -
* VERSION: 3.0 * ,
- * 'l’
* DATE : 31 May 1988 * OV
. * I“T
* AUTHOR : Thecodore H. Barrow * :{
* * 2
(EE SRR RS EEERR SRR SRR A R RS R R R R 2 R R R R R R SR AR R R R SRR R R R SRR ER R R RRR R R S ) :I: A
- * A
* HISTORY: * [}
" * e
. VERSION: 1.0 . :,‘,.'
* * "-
* DATE : 6 February 1987 * Rt
. L] '
. AUTHOR : Michael J. Zyda . 7
* = g 1
. * DESC. : Background process to send messages over link. * »
* * v o
. VERSION: 2.0 N A
- - ,:uf
* DATE : 15 December 1987 * b
- * 'I-*’
* AUTHOR : Theodore H. Barrow * -::,
. * [}
* DESC. : Added capability to get sequence number from command line * )
* and use it to get offset into shared memory segment. * .
. * (%
o
* VERSION: 3.0 * .
* * S
* DATE : 31 May 1988 . N
* * IJ
. AUTHOR : Theodore H. Barrow * v
. * ]
* DESC. : Added broadcast capability * T
W el e e e e o e e e e e e e o e e e e o e e e e e e o e o o o o e e e e o e s e e ke e kR e ok --‘_
* * L)
* RECORD OF CHANGES . Ky
* * \.."
*Version* Date * Author * * Affected *Reqd* \-::
* * Change Description * Modules *Vers* -
LEA AR R LR R R R R SR R R R R R AN RS R R R E R R R R R R R R R R . |
- * - - L » " =
- * * - * "n\
‘itﬁﬁtﬁ#.‘ﬁ*ﬁﬁ.#"ﬁﬁt**“*"*ﬁ‘**‘#‘1#"t‘*‘ﬁt*t*‘tﬁﬁtﬁ"t‘t!*i‘ﬁﬂlt‘ﬁ#“t.tttt/ 'q‘:
el
Y

S

109

o

he 3

T N N L% e N T e e e e LT L s e e Y S S LT LS s T Su e LN T LT LT LT e e T T e e LT LY LW T N T L, e ) '\\‘\*
‘,‘L’_‘i"z Ld Lo 1‘&;.&{;.{3&{11{14@:&{4:‘ LSAA-AA-.AA'A.L{;V,M{MJE_'-._-L s ‘A/..A\.{A.-:' ".’J.."‘-’\.{\"\’L’{L“L‘*‘&f)\.’d&fu "A.‘.m.fJ A_M




v 4t pav. . ga? yav §a¥ da® gat §a* 3 ot fan & bat Ba¥ Bt "t"!'r‘ b 'l'l""" (1 . ot ot Ja® (AT T AT ¥ _Batd |

' J . - WL R WL WY VW W WL WL e W W - "l " N AL, - ) - - -.n
>
\‘ L]
B,
E send.c '
% #include "“shared.h”
H #include "gl. 0" \
U
main(argc.argv) )
int argc; /* argument count */
b char *argv(]: /* pointers to the passed in arguments */
| .
/* we need to declare character variables for everything passed in */ -
]
char shmidstr(10]; /* shared segment string holding the integer shmid */
\ int shmid;: /* integer pulled out of the string */
q char *segment: /* character pointer to the shared segment */ ;
' int sendsem: /* send semaphore */ (]

char *sharedsegment():/* create shared segment function */

9 char mname [ 100]; /* machine name */ N

N char portstr[10]; /* port number string */
long portaum: /* port number pulled from the string */

. char server[10]: /* server string */ ~
: char seqnostr(10]; /* sequence # string holding integer sequence # */ N
': long sequencenum = O; /* integer pulled out of the string (default 0) */

: int socket; /* the opened socket descriptor */ a

int connect_server(),

‘ int connect_client(): :
int start_broadcast(): ;‘
int sender_has_data(); &
int sender_should_die();: ‘
int scmtraﬁ(); /* semaphore creation routine. */ ;
/* pull out the strings from the argument list */ :
if(arge < 5) 3
l printf("SEND: incorrect argument count!\n"); )

exi1t(l); ~
} N

/* pull out the shared memory string */ \
strepy(shmidstr argv[l]): Y
sscanf(shmidstr, "%d" &shmid)

-

/* pull out the machinename string */
strcpy ‘mname argv[2]):

~

/* pull out the port number string */ N
strepy(portstr. argv({3})y: '}
sscanf(portstr,"%d" ,&portnum) :
/* create the send semaphore */ \
110 ,

L]

%

4%

A R S LR '_q"-,""’."‘..
N A A TS TN



Y N A VT YN R T AV AT A NE P IN I F R FT Y TF "NV I TR NI TSI IV,

send.c

sendsem = semtran(portnum);

/* pull out the client/server string */
strecpy(server argv(4]):

/* pull out the sequence number string */
if( arge > 4 )
{
strcpy(seqnostr,argv[5]);
sscanf(seqnostr, "%d" ,&sequencenum) ;

}

/* attach to the shared memory segment */
if((int)(segment = (char *)shmat(shmid, 0, 0666)) < 0)
{

perror( "SEND: shmat");

exit(0):
J

/* create the shared segment */
segment += sequencenum * MAXSHAREDSIZE;

/* open the socket connection to the named machine */
if(strcmp(server,"server”) == 0)
{
/* we should open as the server */
socket = connect_server (mname ,portnum);
}

else if( stremp( server, "broadcast” ) == 0 )

/* we should open as a broadcaster */
socket = start_broadcast( portnum };

)

else

/* we should open as a client */
socket = connect_client(mname,portnum);

/* check to make sure socket was opened, exit if not */
if(socket < 0)
(

printf("SEND: socket connection NOT made!\n");

exit(l);

)

/* the infinite loop.. */

if( strcmp( server, "broadcast” ) == 0 )
while(TRUE)

{
/* should the sender die??? */
if(sender_should_die(segment sendsem))
{
/* exit after detaching segment and cleaning up socket */
detachsharedsegment (segment):
shutdown(soc:t, 1)
close(socket);
exit(0);

/* 1f there is data in the shared memory segment., ... */
if(sender_has_data(segment))
{
/* write the data in the shared segment onto the socket */
send_socket_from_segment(socket portnum,segment):

111

T AT AT AT T T S O S B NN 8 A S

Y WY

ny

s XL RS

[P,

P o e S

MWW

8NN

Lot Pyl



SV LTV

send.c

/* at this point, sleep until we receive a signal from the graphics
program. The signal will indicate that the graphics program
has put more data into the shared segment.

*/
P(sendsem):
} /* end while true for broadcasting*/
else
while(TRUE) -

|
: l
i /* should the sender die??? */
: if(sender_should_die(segment,sendsem))
{
/* exit after detaching segment and cleaning up socket */
detachsharedsegment (segment);
shutdown (socket, 1);
close(socket);
exit(0);
}

/* if there is data in the shared memory segment, ... */
if(sender_has_data(segment))

/* write the data in the shared segment onto the socket */
write_socket_from_segment(socket,segment);

)

/* at this point, sleep until we receive a signal from the graphics
program. The signal will indicate that the graphics program
has put more data into the shared segment.

*/

P(serdsem);

} /* end while true for direct connection*/

R

et 4
[

V-'}-‘

PR A
.
s
M

«
.
2

e

1@

Uy

TN

N SN g
L.
[ ]
]
P

112

h:.r'.‘.r:' PGt AR T AT APt ag'e



[ G0 8 G0 G R S 1 8 A R B G e L b B LA A LA L A L AN AR A G CA DAL LD bl A AL LAY RN MA LR L AL S0 1
-

7. shared.h

a. Calling Protocols

This module has all the predefined constants and type definitions. It must be

included in the application.

4
A

]
i

PR O N}
e“eTeTa T
Ce e

SCANEEL®
<1

7

‘-,‘;.{

VYN
'l“", s

~
I

113

2P EN®

PR LV Ly 4 Vg Wy T K W oy W W g Py oy
R Th S SR Put e iyt e, iy of VA WA/l M S Wiy i AT W A



shared.h

b. Code and Description

LA SRR R EERE SRR EELE S SRR R R R R iRt R s R 2 22 R R R R 2 R R iR R i R R R R R R R R R R R R R R RER]

TITLE : Inter-Computer Communication Package
MODULE shared.h

VERSION: 4.0

DATE : 15 December 1987

AUTHOR : Theodore H. Barrow

T T T T T

HISTORY:
VERSION: 1.0
DATE : 6 February 1987

AUTHOR : Michael J. Zyda

DESC. : Contains all defines and special constants for shared
memory socket system.

VERSION: 2.0
DATE : 27 May 1987
AUTHOR : Theodore H. Barrow

DESC. : Added a typedef of structure for use by various routines.
Added message types for high level read/write protocol.

VERSION: 3.0
DATE : 21 October 1987
AUTHOR : Theodore H. Barrow

DESC. : Changed dependencies of buffer calculation constants so that
only one need change. Added additional message types.

VERSION: 4.0

DATE : 15 December 1987

AUTHOR : Theodore H. Barrow

DESC. : Added field to buffer set so that each l[ink would have its

own area to handle partial receipt of messages.
e Aok o e ol e e e e o o e e s o o ok e e o i ok ool e e i ofe R e ok ook e e e e ok ol e ok ol e o i e e e e o N ek e ok ok ok ok ke K

*

L R B B 2K R R R NE R NE BE BE R S R AR S B AR K R R BRI S N N R N B N N NN 2K IR O EE R N R RN R N
* % % F B F 5 B %X B R R R R R R R RN R RN AR R AR PR R R R R E R R R R KRR R AR

RECORD OF CHANGES *

*

*Version* Date * Author * * Affected *Reqd*
* * Change Description *  Modules *Vers*
At o e e e e ol e e ol el ool o e e s e o ol s e o e ok e o R o e s o o o ol ot e e ol i i e e e i e e e o e e ke e e o ke e
* 4.1 * 4Jan88 * T. H. Barrow * * * *
* * Changed pathname to include /usr for IRISI1 * * *

t*tttt#t**.#ttt*t**#t*t*ﬁt#ﬁtt*ﬁ*tttt*tt******ﬁ#*t******tt*tttttt‘ttt**#t*ttt/

114

SN

»
L

¥'s

"¢

s 5%

L

« rL L
:{kﬁﬁ##i&>

E{KI&{Sf ®

<,

2y

\"-

__,.‘,'._.
e ”]®

L

S

-
NP

"
®




X PO AR

3,

Vet gt

/#

NS W o
b h

3 e TN T L L o L LA A N L R N O N T T R R O Oy

shared.h

the following 3 defines are the changeable parameters

L

»
LARGESTREAD MUST be divisible by 4 “

*/ "
-

#define SENDLOCATION "/usr/work/barrow/share3/send” /* the name of the program :5.‘
to run for the sender */ RS

-“"
#define RECEIVELOCATION "/usr/work/barrow/share3/receive” /* the name of program oG
to run for the receiver */ ‘

#define LARGESTREAD 252 /* the largest read (i.e. buffer size) */

e

‘o

ey

/* The following defines are constants or are derived from LARGESTREAD */ "
#define SENDEROFFSET (LARGESTREAD + 4) /* the sender data starts here */ :‘.
5-’.‘

#de fine WSENDEROFFSET (SENDEROFFSET / 4) /* long word offset for sender data */ -

#define RECEIVEROFFSET 0 /* the receiver data starts at byte 0 */ ‘|'

#define WRECEIVEROFFSET 0 /* the receiver data starts at long word O */ ﬁ
¥
%

#define PROTOCOLHOLDOFFSET (SENDEROFFSET * 2) /* holding area starts after e

N

sender area */

#define MAXSHAREDS IZE (PROTOCOLHOLDOFFSET + 12) /* the number of bytes in the
shared segment */ !'
)
#define CHARACTER_TYPE 'B* /* code for characters */ *‘.’
#define INTEGER _TYPE "I /* code for integers */ <
#define FLOAT _TYPE 'R' /* code for floats */ \
#define CHARACTER_ARRAY TYPE 'C' /* code for character arrays */ '.
#define INTEGER_ARRAY_TYPE "] /* code for integer arrays */ .u:
. #define FLOAT_ARRAY_TYPE 'S’ [/* code for float arrays */ i
#define CHARACTER_SIZE 1 /* character size in bytes */ ¥
#define INTEGER_SIZE sizeof (1) /* integer size in bytes */ 4
#define FLOAT_SIZE sizeof(1.0) /* float size in bytes */ 'l|
/* the following is the structure type definition needed for each machine :
you want to conmunicate to... N
»/ o
typedef struct | o
char *segment; /* ptr to shared memory segment */ ..v
int shmid; /* system generated shared mem. id */ N,
LY
]
int sendsem; /* semaphore used to wakeup the sender It
process.
*/ g:
int receivesem; /* semaphore used to wakeup the :‘:
receiver process... G
*/ -
} Machine e
]
N
™~
~.
N
S
N
.
N
115 N
4
’
B
o
.*
- . ~n
8 A A A AN N A O A SO R R St T




A AL L AN E S Gk LI

K
-~
-~
ol
ht?
-
8. shareseg.c
a. Calling Protocols
This module contains the low-level shared-memory calls. No functions in this
module are intended for application programs.
b. Code and Description
AR T L e P e L
* »
* TITLE : Inter-Computer Communication Package *
- -
* MIDULE : shareseg.c *
» *
* VERSION: 3.1 *
* *
* DATE : 24 F.bruary 1988 *
* *
* AUTHOR : Theodore H. Barrow *
* *
LA AR E R R RS AR R R R RS R ERR R RS R R R R R iR i R R 2R R R R R 2 2R iR AR R R RS R R R R YRR
" *
* HISTORY: *
» *
* VERSION: 1.0 *
” *
* DATE : 6 February 1987 *
. *
* AUTHOR : Michael J. Zyda *
* .
* DESC. : Contains routines to manage shared memory segment. Creation *
* attachment, detachment and deletion are al}l covered. *
- *
* VERSION: 2.0 -
* *
* DATE : 21 October 1987 *
” *
* AUTHOR : Theodore H. Barrow *
" *
* DESC. : Added function dynamicsharedsegment to allow dynamic memory *
* allocation after communications link established. *
L -
* VERSION: 3.0 *
* *
* DATE : 15 December 1987 *
» .
* AUTHOR : Theodore H. Barrow *
. -
* DESC. : Modified function dynamicsharedsegment for use with multiple *
* links. First call does shared segment creation. Subsequent
* calls return address for the next buffer set. *
LR R EEEEEEE R R RS R R R SRR R R RS AR R R R R R S R R R R R R R R R E RN TR TN
» *
* RECORD OF CHANGES *
- *
*Version* Date * Author * * Affected *Reqd*
» * Change Description *  Modules *Vers*
I AA LA ERE S EREREE R R R EE SRR R R R R AR RS R S R R R R R R R R R R R RS R P R EEE R R
* 3.1 * 24Feb88* T. H. Barrow * * none * *
hd *  Added compatibility for IRIS 4D. * * *

tt“ﬁOtttt***t*ﬁt#t#tttttttt#t#*‘*ttﬁ**t#ttt*tt#tt#t‘t‘*#*#.i“*‘ttttttﬁttttt/

116

TGN

- :1 mﬂ n‘;\:‘z{: ;.-.)-] -‘: ; N ---*-



]
L]
»
i
]
[
"

=

o P TR

shareseg.c

#include <sys/sysmacros.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm. h>
#include <gl.h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attaciment mechanisms should
work for any system V implementation. */

#define IRIS4D 1

#define IRIS3000 2

#ifdef FLAT

#define MACHINE IRIS4D
#else

#define MACHINE IRIS3000
#endif

char *sharedscgment(key,nbytes,shmid)

long key: /* the key to use for the segment */
long nbytes: /* the number of bytes in the segment */
int *shmid: /* returned shared memory id name */

char *buf: /* temp char pointer */

struct shmid_ds junkbuf; /* I don't care what's in this buffer */
/* allocate a shared memory segment */

if( (*shmid = shmget( key, nbytes, 0666 | IPC_CREAT )) < 0 )

{

perror("shmget”);
exit(0);

/* attach to the shared memory segment */
if((int)(buf = (char *)shmat(*shmid, 0, 0666)) < 0)
(

perror("shmat”);

/* Since there was an attachment error, delete the segment */

if( shmctl( shmid, IPC_RMID, &junkbuf ) == -1 )
perror( "shmctl" );
exit(0):

/* return the pointer to the shared segment */
return(buf);

117

L)

T I N I N R R R T A L SR N Y S T I G
LA VR VAR T 35V IR PR ST A R L T, Ve iy W VR W v AR VLY Wy X

"W WA
A

- e~
MR

o o 2 T S ST

Sy RW WP

DV P P ’

2 1 _@_ 8 @ s "

T ACRE AR



IRARR AR X UM ANRAR AN NUN CEUTRR I T A un'g\r.l"bll‘.t AR T WK Y 1.8 W N N W Ny L A AR va k "_._".‘ ) ot 9g¥

) h
ﬂ' t
! )
5
f: shareseg.c
[’
::. char *attach_within_datasegment( key, size, shmid, freespace ) |
1‘! long key: /* the key to use for the segment */
‘ long size: /* the number of bytes in the segment */ )
3 int *shmid: /* returned shared memory id name */
>
W int freespace: /* amount freespace desired for dynamic allocation */ :
X ( . v
X char *enddata, *buf; /* temporary address pointers */ \
struct shmid_ds junkbuf; /* 1 don't care what’s in this buffer */
o 4
ol char *sbrk(), *malloc(); \
bt
o /* allocate a shared memory segment */
¥ if( (*shmid = shmget(key, size, 0666 | IPC CREAT)) < 0 )
& l
perror("shmget"):
exit(0); v
)
i' l '
ie /* Ensure at least as much unallocated space as freespace indicates. 't
K Nomally the top of the data region is incremented more than the {
" minimum required to meet the malloc() request. Using malloc()
A and free() ensures that this mechanism is available for subsequent -
dynamic memory allocations. Direct use of sbrk() system call .
v causes the malloc() mechanism to fail on subsequent allocation .
W requests. freespace is cast to unsigned to meet malloc() spec. */ :
™ free( malloc( (unsigned)freespace )); \
¢
! /* find the top of data region */ d
\:. enddata = sbrk(0);
) /* round up to the next page boundary for attachment of shared )
- memory segment */ ]
b~ buf = (char *)((int)enddata - ((int)enddata % SHMLBA) + SHMLBA): .
+q) [}
0 /* reset top of data region to be above shared segment */ -
’. if( brk( buf + size ) < 0 ) |
‘ L
K perror("brk"); E
A /* Since there was an error, delete the segment "/. ”
3 if( shmctl( shmid, IPC_RMID, &junkbuf ) == -1 ) i
perror( "shmctl” ); !
exit(-1);
N ) '
X /* attach to the shared memory segment at the calculated address */ :
if( (int)shmat(*shmid, buf, 0666) < 0 )
\ I g
» perror("shmat”); '
" /* Since there was an attachment error, delete the segment */ :
A, if( shmctl( shmid, IPC_RMID, &junkbuf ) == -1 ) -
s perror( "shmctl” ): -
' exit(0). b
)
o retvrn( buf );
[; } /* attach_within_datasegment() */
V8 .
L) .
- )
l‘ d
118

SRRt

o o I " ST T R A e W P R N P T



L CLE AL UL P PN S S Ay 4%y fig ST gvn Ay iy a0ergtntpty PACRE GRSV, a0

shareseg.c

char *dynamicsharedsegment(nummachines, key, nbytes, shmid, freespace)

int nunmachines: /* maximum number of machines to be initiated */

long key: /* the key to use for the segment */

long nbytes: /* the number of bytes in the segment */

int *shmid; /* returned shared memory id name */

int freespace;: /* amount freespace desired for dynamic allocation */

{

static Boolean firsttime = TRUE: /* allows for multiple calls */
static char *startshared; /* start of shared memory space */
static int *holdshmid; /* holds shmid for subsequent calls */

if( firsttime )
(
switch( MACHINE )
{
case IRIS4D:
startshared = sharedsegment( key, nummachines*nbytes, shmid ):
break;
case IRIS3000:
startshared = (char *)attach_within_datasegment( key,
nummachines*nbytes, shmid, freespace ).
break;
default:
perror( “"shareseg: Unknown machine"” );

} /* switch( MACHINE ) */

- holdshmid
firsttime

shmid:
FALSE;

}
else
- {

/* start next buffer immediately above last. Return the same shmid
for al! buffers. Assumes all buffers are same size (true if all
from same shared.h definition. */

startshared += nbytes;

*shmid = *holdshmid;
}

/* return pointer to the proper buffer in the shared segment */
return( startshared );

{..',.: )

119

S R
4.\ \‘

.I\

Peks

7’

O (, L S B o S R A e S PR A T T e e SO el R
o N5 50 0 R AT S AT AT A Wl T AT R T B T A S SO A A IR



W P W W W U W W W NV W o W W W R W N T W OO VW

shareseg.c
detachsharedsegment (segment)
char *segment: /* segment to detach from */

{

int returnvalue;
if( (int)segment % SHMLBA != 0 )

return( 1 );
else
[ .
if( returnvalue = shmdt(segment) < 0 )
perror(“shmdt");
return( returnvalue );

deletesharedsegment(segment,shmid)
char *segment: /* character pointer to the shared segment */
int shmid; /* shared memory id... */

{

int returnvalue;:
struct shmid_ds junkbuf; /* I don't care what's in this buffer */

/* detach from the shared segment and set returnvalue */
if( returnvalue = detachsharedsegment(segment) == 0 )

/* remove the shared segment from the system and reset returnvalue */
if( returnvalue = shmetl(shmid, IPC_RMID, &junkbuf) < 0 )
perror("shmctl”);

return(returavalue);

120

T A e S AV LY



TR LS L A LA R PCIOT R T W, R0 048 4.0 0% 44 2% a1 s 2 AN, y 1At Al § b Salh vat t e aVa 4V Ve 48 00 Gt " Ra¥ . 0at 2 O g% g2 wg-

9. support.c

- g =
-~

a. Calling Protocols {

This module contains functions that are intended for the application’s use and !

functions that are used exclusively by other routines. The parameters for externally v
accessible functions are described below.

i.  receiver_has data -

int receiver_has_data(instructure)

=
Machine *instructure; /* includes 5
char *instructure.segment a pointer to the shared segment */ )

ii. sender_is-free e

Machine *instructure; /* includes Al

2 int sender_is_free(instructure) )
' char *instructure.segment a pointer to the shared segment */

TR
.
P TR0l ST R ST IAN g

— R EEE

2 s

e,

R

XX A MRS

o
-

-~

.{.‘.,

.
]

- '..:,, ..




USSR TIPSO R AR SO ARCITAR L NN SO RN IR TN A RPN RNy W Vi WLV LWL KUY UY UV N ' A . C

A
]
.
®
support.c 0
u'-
b. Code and Description o~
N
/"**"’Fﬂl'l1'***ﬁ‘*##**##*##t*'#*ﬁ**‘*t#t#t"“‘*#‘tﬁ*t!"l!t‘t‘#*‘tﬁ'*“‘*tt‘tttt 8
* . :
* TITLE : Inter-Computer Communication Package * _._
* . . o
* MDULE : support.c * W~
. * \.
* VERSION: 4.0 * A
» * R \',)-
* DATE : 31 May 1988 . B
” - -
* AUTHOR : Theodore H. Barrow * o
- * Ot
ERRRRNE R AR R AR R RN R R AR R R R RRR AR R R R R AR R AR R AN R AR KRR R AR AR AR RN Rk Rk RNk & -\‘
* * b
* HISTORY: * VR
- * fian
* VERSION: 1.0 * ‘0‘
» *
* DATE : 6 February 1987 * .».
- 4 -
¥ W]
* AUTHOR : Michael J. Zyda * s:_
* * (a8 ¥,
-
* DESC. : Contains support routines for shared memory conmunications * e
- * 50
system. -
. . v
o
* VERSION: 2.0 * .
* * Tl
* DATE : 27 May 1987 * S
* * ' q
o
* AUTHOR : Theodore H. Barrow * -‘,;.(
] * A
. . AL
> DESC. : Converted functions called by the application program to use * .-;,r-
. a structure for ease of use. * Yot
L4 * - -
* VERSION: 3.0 *
. * "'Yf
* DATE : 21 October 1987 * {: 0
. . Y ¢
- AUTHOR : Theodore H. Barrow * o
* * »
. - oy
* DESC. : Removed functions for reading from and writing to the shared * :5
* memory segment by the application program. * ®
* *
oA
* VERSION: 4.0 * Ay
- * Sa
* DATE : 31 May 1988 * Y
» * N
N
* AUTHOR : Theodore H. Barrow * ::?\"
. * gl
. . fal §
. DESC. : Added functions broadcast_into_segment and * ®
> send_socket_from_segment for broadcasting over datagram socket* =
LA AR E R R RS EEREESEEEE LR EER R R R Rt SRt R L R Rl R R R Rl Rl Rl R LR \‘:
- * n‘
* RECORD OF CHANGES * %\
. . N
*Version* Date * Author * * Affected *Reqd* ey
* * Change Description *  Modules *Vers* Al
S0 e e e o e e o e e e o ok e e o e e e e e o e e e e ol e o e o e e e e e e ke e e ke e e o e ol o s ok e e e e e e ok e ok ke sk stk ok ko R ko >
* * bl * * * * ..‘
. " - - * . -f‘“
’t.tﬁﬁ!.tﬂ#t#t*i‘ﬁ‘*.#ﬁ*ﬁﬁ#tﬁ‘t*‘lﬂlt*ﬂ'.lﬁ##‘l”‘l***ll'tl‘l#*#*t*tt#ﬁ**tt**##ttt*#tt*t/ $~
"-&
4
. .
S
o
XY
'.h
122 N
N
L)
N
| J
.
\‘:‘-
Ay e AN N e T




support.c

#irclude "shared.h”
#include <gl.h>

#include <bsd/sys/types.h>
#include <sys/socket . h>
#include <bsd/netinet/in.h>
#include <bsd/netdb.h>

/* the following routine sets up buffer area */
init_shared_buffer(segment)
char *segment; /* pointer to the shared segment */

{
free_sender( segment );
free_receiver( segment ):
*(segment + PROTOCOLHOLDOFFSET + 9) = '\0’;

/* the following routine writes zeroes at the top of the

shared segment indicating that the segment data is no longer
valid.

*/
free_sender(segment)
char *segment; /* pointer to the shared segment */

{
/* the following line zeroes the first four bytes of the sender part
of the shared memory segment. 'segment’ is a character pointer.
I coerce it into a long integer pointer and then write a zero.
*/
*((long *)segment + WSENDEROFFSET) = 0;

/* this following routine writes zeroes at the top of the
shared segment indicating that the segment data is no longer
valid.

*/

free_receiver(segment)

char *segment; /* pointer to the shared segment */

/* the following line zerozs the first four bytes of the receciver part
of the shared memory seguert. 'segment’' is a character pointer.
I coerce it into a long intzger pointer and then write a zero. -
*/

*((long *)segment + WRECEIV. OFFSET) = 0:

P
N

L AN

\_' s .."

#;

123

RA I I F
™

e A (R S e A N L T DT GO O g




T TR Y i X T B N T P S S WO Wi T I WY WORT, 4
3,

support.c

/* the following routine tests the first 4 bytes of the receiver
segment to see if they are non-zero.
it uses an input structure since called by main program

*/
int receiver_has_data(instructure) .
Machine *instructure: /* includes

char *instructure.segment a pointer to the shared segment */

if(*((long *)instructure->segment + WRECEIVEROFFSET) > 0)
{

return(TRUE) ;
}
else
{

return(FALSE):

)

/* the following routine tests the first 4 bytes of the sender
segment to see if they are non-zero.

*/

int sender_has_data(segment)

char *segment: /* pointer to the shared segment */

if(*((long *)segment + WSENDEROFFSET) > 0)
{

}
else

return(TRUE) ;

return( FALSE) :

-
-\
.
" 8
-
-

v,
e’

I'd

¥

N

124

R A P o U T AR A A T N N AP R R R Rl N Rt R R
T A P VN P PO PRSP T PR VS0 U PR I AR VR P R vy v W P O 1 .



support.c

/* the following routine tests the first 4 bytes of the receiver
. segment to see if they are less than zero.
int receiver_should_die(segment)
char *segment: /* pointer to the shared segment */
{
if(*((long *)segment + WRECEIVEROFFSET) < 0)
l return{TRUE)
llse

(
)

return(FALSE) :

/* the following routine tests the first 4 bytes of the sender
segment to see if they are less than zero.

*/

int sender_should_die(segment)

char *segment; /* pointer to the shared segment */

{

if(*((long *)segment + WSENDEROFFSET) < 0)
(

return(TRUE) ;
)

else

{
)

return{ FALSE) ;

125

4,

- t,;s;ﬂ r 5]

s

A

5% 5 &

o

.-

. .,

P AR A o

o,

’ ’/ »”
‘l.- ity .

]
X
-

s

LA
A
] . "

L
v

ra
Fails
=M

A" SRR

I 4w 4



"
3
o
.
Py
P
[
&l
3
!
»
y
¢
.
f
t
~
=
N fs ’ -

»
Ly

g

support.c e

A

/* the following routine tests the first 4 bytes of the receiver (.‘:
segment to see if they are non-zero. h:.

*/

int receiver_is_free(segment)
char *segment: /* pointer to the shared segment */

{
if(*((long *)segment + WRECEIVEROFFSET) == 0)

e @ T
.

{ - '
return({TRUE) ; y

}

else .,

{ A
return(FALSE); )

) ]

*

v,
/* the following routine tests the first 4 bytes of the sender $
segment to see if they are non-zero. o]
it uses an input structure since called by main program o
./ » {
L] +
4.
int sender_is_free(instructure) s
Ll
Machine *instructure; /* includes by
char *instructure.segment a pointer to the shared segment */ ﬂ:"
g
I N
W
if(*((long *)instructure->segment + WSENDEROFFSET) == 0) ;f'
{ ®
return{TRUE) , %
! he!
else g
( ~
return(FALSE) ; :"-.
l ".‘!
’ -:N
4
-
".
SN
\:_‘
LI
o
N
I"‘l
]
i
~ 4
et
ﬁ_',-
ale
:-‘-
@

126

e AR R YWD T ' e 8 e N e N

R TR T T T T T N S I e o
) P, . ).q‘- A ),‘-c.- el

B



"3 8 N AV R RUL SRR Vel SR QLR RSENA VA ST S SO QUSSR A Ve §¥-0%0 %), 03 879 0 a8 4.0 LV 08 $a0 A0 e oVl 0e 0P alh oF e La R O E00 SURE Rl F o) Sob Sad o8 gl Sa)d va¥ Sal el Sa¥, 4F ly

support.c
/* the following routine reads on the input socket into the receiver segment.*/
read_socket_into_segment(socket segment)
int socket; /* a socket descriptor */

char *segment; /* a ptr to the shared segment */

{

long nbytes; /* the number of bytes read in */

char tempLARGESTREAD] ;

/* read the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment .

*/

nbytes = read(socket,temp, LARGESTREAD) ;

if(nbytes <= 0)

/* the following routine calls are commented out for the following
reason:

nbytes <= 0 means that the socket has been broken.

This routine is called by the receiver process so the only
intelligent thing to do is to terminate the receiver process,
t.e. call exit...

perror(“"read");
print f ("READ_SOCKET_INTO_SEGVENT: number of bytes recad = %d\n",nbytes):
*/
shutdown( socket, 2 );
close( socket ):
exit(l);
}

/* copy the data into the shared segment */
memcpy( (segment + RECEIVEROFFSET + 4),temp,nbytes);

/* set the number of bytes in the shared segment */
*((long *)segment + WRECEIVEROFFSET) = nbytes;

127

g NN T N

L A W T W 8 N e i W o W e T T W S g N A S e e P N SRS I A B .
e e Y e e R e A A o R ol e



/t

wr i

int

aPg a0l ot At a? s a¥H a0 g%t ate a0l s 08" 2% 0 0g ataakgta s tnt NavVon® Wuv Gat (at o Gai et 0,0 flaf ol ol ¢ Get Rat pa R 8%y VLV AV LVUTLYLNY

support.c

the following routine writes the data from the sender side
of the shared segment to the socket */

te_socket_from_segment(socket, K segment)

socket; /* socket descriptor */

char *segment /* pointer to the shared segment */

long nbytes: /* the number of bytes to write */

char temp[LARGESTREAD] ;

/* copy the data into a temporary array to avoid segment protection
violation since *he socket does not share with the shared memory
segment .

*/

memcpy(temp,.((char *)segment + SENDEROFFSET + 4),

*((long *)segment + WSENDEROFFSET) ):

/* write the data to the socket */
ubytes = write(socket, temp, *((long *)segment + WSENDEROFFSET));

if(nbytes <= 0 i| nbytes != *((long *)segment + WSENDEROFFSET))
{ o
This error indicates the socket is broken. Just exit the

sender process.

perror("write");
printf ("WRITE_SOCKET_FRQM_SEGMENT: number of bytes written = %d\n" . .nbytes):

printf("Number of bytes in shared segment = %d\n",*((long *)segment + WSENDEROFFSET)):
*/

shutdown( socket, 2 ) .
close( socket );
exit(l);

/* free the sender segment */
free_sender(segment);

128

[ o > T 4
Y

'y ';'."-','..

o

o

{J{{ -

@

-y
s

T

ey

az
" .
-

v

“B
L

A® 75

',}

U IR % v
P 4
£l

3

=
14
-,

>
et

r".‘zr‘

¥

72




support.c

/* The following routine receives on the input datagram socket.
If the message matches the mname and portnum it 1s copied into the
receiver area of the shared memory segment.
0 is returned if the message does not match mname and portnum,
the number of bytes read is returned if it does match. */
int broadcast_into_segment(socket 6 segment mname, portnum)
int socket: /* a socket descriptor */
char *segment; /* a ptr to the shared segment */
char mname[]: /* machine name of broadcaster */
long portnum; /* port number of broadcaster */
(
long nbytes; /* the number of bytes read in */
char temp[LARGESTREAD];
int flags = 0; /* flags = 0 indicates none set */
struct sockaddr_in who: /* Internet structure for message sender address */

int wholen: /* length of received address struct who */

struct hostent *broadcaster: /* pointer to structure with info on
broadcaster */

static long broadcast_address; /* address of broadcaster */
static short broadcast_port; /* port of broadcaster */

static Boolean firsttime = TRUE;

h’\

/* read the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment. This also allows checking for match with desired broadcaster.

-l—rl
L 4 4
il

*/
nbytes = recvfrom( socket, temp, LARGESTREAD, flags,
(struct sockaddr *)&who, &wholen );

if(nbytes <= 0)
{

]

else

{

perror(“"recvfrom:");

if( firsttime )

{
/* determine desired broadcaster address and port */
broadcast_port = htons((short)portnum);

broadcaster = (struct hostent *)gethostbyname( mname ):

bcopy( broadcaster->h_addr, (char *)&broadcast_address,
broadcaster->h_length );

ift (broadcast_address =

{

who.sin_addr.s_addr) &&

(broadcast_port = who.sin_port) )

129

m RPN T I L T R L T N T N P T L S N NN ; L Pl
AL LA S R LR VLS L Ttk LR A L R G R N P PV IR VORI T UM Ao’ o )



g TS
RV i S I RV I

support.c

/* copy the data into the shared segment */
memcpy( (segment + RECEIVEROFFSET + 4),temp.nbytes):

/* set the number of b */
*((long *)segment +

tes in the shared segment

CEIVEROFFSET) = nbytes;
}

else

(
nbytes = 0;
/* Set nbytes

to 0 so return of function indicates no match */

}

return( nbytes ):

130

v

AE \4
NSO S

".r I tanN. s -" '.‘.' s -- O ,‘\__ v . .\‘_.

ARSI

.
)

Bl LA

b T o

3

o g g
AI“.--

oA

}J'-I‘ilﬁ‘ 1"1"!,- -

v
a4 N4
s

- L

TR

A



“ {._\ _N"- = "

TRITR

/t

R R Y R N TR PRI U N LW U U U aM LW U o ARt at el sl S A Sl A p

support.c

the following routine sends the data from the sender side
of the shared segment to the socket for broadcast */

send_socket_from_segment(socket ,portnum,segment)

int

long portnum;

char *segment;

{

YT et R s a"m”a -
-"ofn’-._-‘_ e

socket; /* socket descriptor */

/* port number of broadcaster */
/* pointer to the shared segment */
long nbytes: /* the number of bytes to write */
char temp[LARGESTREAD];

short broadcaster_port;

static Boolean firsttime = TRUE;

static struct sockaddr_in network = { AF_INET }; /* structure for broadcast

address */

if( firsttime )

{
broadcaster_port = IPPORT_RESERVED + portnum;
/* Set up broadcasting address structure */
network.sin_family = AF_INET;
network.sin_addr.s_addr htonl ( INADDR_BROADCAST) ;
network.sin_port htons(broadcaster_port);
firsttime FALSE;

)

/* copy the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment .

*/

memcpy(temp,((char *)segment + SENDEROFFSET + 4),

*((long *)segment + WSENDEROFFSET));

/* broadcast the data through the socket */
nbytes = sendto( socket, temp, *((long *)segment + WSENDEROFFSET), 0,
(struct sockaddr *)&network, sizeof(network) );

if(nbytes <= 0 1| nbytes != *((long *)segment + WSENDEROFFSET))
{ /e
This error indicates the socket is broken. Just exit the
sender process.

*/

perror("write"):

print{( "WRITE_SOCKET_FRCOM_SEGVENT: number of bytes written = %d\n" ,nbytes):
printf("Number of bytes in shared segment = %d\n" ,*((long *)segment + WSENDEROFFSET) ):

shutdown( socket, 2 );
close( socket ):
exit(l):

/* free the sender segment */
free_sender(segment);

131

o, s m_ s
" -J‘."" LS

AP, A

‘)“ 2 r-'l'," »
ey ®

A Sy % ®
-_’-“‘_._:‘ x

‘-‘.‘r

W e e
R
.’.'.-‘).'-ff

o
4

rd

LS 20 ) "J.' Ly ot
) <i-
'v"'-,‘- b F e,

R, VLIS E
Io f-" L2

4

o



DI N

-

R R R A O O T A OO X IR Tt 0¥ tn”atat 02" atet 208 21" a 8 208" 150" 272" 00 02" 190 200 2 A" u Va2 " n 12", v e et Sh" ", " . et fas Safla® 04",

N - N KN - oSN W W Wt M W 0¥ 4

4

44

¥

L

support.c {;:

/* the following routine deletes the sender by writing ,
a negative byte count into the shared segment i
and then waking up the sender. ys

‘/ b
i

kill_sender(segment sendsem) \:
char *segment: /* ptr to the segment */ I
int sendsem; /* semaphore to the sender */ y
{ i ~

/* write a negative number into the byte count field. */

*((long *)segment + WSENDEROFFSET) = -1;

X

!

/* at this point, we should send a wakeup to Lhe sender program. ;
. the sender will read the bad byte count and exit. %4
V(sendsem); }
' 3
l‘,

/* the following routine deletes the receiver by writin
! g d y -4
a negative byte count into the shared segment
and then waking up the receiver.

"

)
<
- "
/ o
. . . LS
kill_receiver(segment,receivesem) N
N
char *segment; /* ptr to the segment */ =3
™

int receivesem; /* semaphore to the receiver */ " }
9
( ~J
~
>
S
~
b\

/* we do not wait until the receiver segment is free here
as the process that calls this routine should already
have read the last piece of data.

*/

/* write a negative number into the byte count field. */
*((long *)segment + WRECEIVEROFFSET) = -1;

/* at this point, we should send a wakeup to the receiver program.
the receiver will read the bad byte count and exit.
*/

V(receivesem):

>
132 >
b
~
~
)
AN
>
5
R N 25 AT SN BTN S N S M AT TN SN T M P NP NN R B A L



Y R R R S e eV I N T I I N O T O R R O ™ b
..5::‘
X
(2
»
!
APPENDIX B - TT EXPLORER MODULE DESCRIPTIONS h"
,
All functions, methods, and flavor are contained in file irisflavor.lisp. )
. 1. Calling Protocols A
\
The module contains functions, methods, and a flavor that are intended for the .
%
. . . . i
application’s use. It also contains a macro and functions that are used internally. The o
parameters for externally accessible functions and methods are described below. o
~y
a. iris ®
™0
(defun iris (x) :where x is number of iris machine desired .
Wit
b. start-iris 'Jl.::
(defmethod (conversation-with-iris :start-iris) :Q:
O
c. get-iris \._,‘
(defmethod (conversation-with-iris :get-iris) N )
) '\'j
d. put-iris iy
(defmethod (conversation-with-iris :put-iris) h
(object) -
(let* ((buffer (cond )
((equal (type-of object) 'bignum) (convert-number-to-string object)) T
((equal (type-of object) 'fixnum) (convert-number-to-string object)) Ve
((equal (type-of object) "float) (convert-number-to-string object)) :."-
((equal (type-of object) ’'string) object) N
(t "error") ))
e. stop-iris g_;.
(defmethod (conversation-with-iris :stop-iris) v
0 0
f.  reuse-iris O
[ ]
(defmethod (conversation-with-iris :reuse-iris) ::;'_
@) o
."‘-\
o
F~
oA
.:_'
R
]
N
N
133 Lo
\
QJ
!




G I T KT RN T X v " AV Sla" A, Ay’ 4V fla AU A¥a AV¥e Qly" oS T . ¥ e 2T Ol ol

K ) ) ) ) ) ) )
1y

Ju

o

i Explorer irisflavor.lisp

A

' o
:“: 2. Code and Description
;5 (defmacro loopfor (var init test expl &optional exp2 exp3 expd4 exp$5)

"{paog (.

; (setq .var ,init)
l:C tag

I% .expl

) .exp2

W .exp3

k, .exp4
1y .exp3S

(setq ,var (l+ ,var))
. (if (= ,var ,test) (return t) (go tag)) ) )
N
e (defun convert-number-to-string (n)
\ (princ-to-string n) )
%
5 (defun convert-string-to-integer (str &optional (radix 10))
W (do ((j O (+ j 1))
(n 0 (+ (* n radix) (digit-char-p (char str j) radix))) )

. ((=j (length str)) n) ) )

o (defun find-period-index (str)

A (catch “exit
%) (dotimes (x (length str) nil)
e (if (equal (char str x) (char "." 0))
l' (throw ‘exit x) ) ) ) )
: (defun get-leftside-of-real (str &optional (radix 10))

§ (do ((j O (1+ j))
: (n 0 (+ (* n radix) (digit-char-p (char str j) radix))) )
ez ((or (null (digit-char-p (char str j) radix)) (= j (length str))) n) ) )
?' (defun get-rightside-of-real (str &optional (radix 10))

¢

o (do ((index (l+ (find-period-index str)) (1l+ index))
(factor 0.10 (* factor 0.10))
(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))) )

. ((= index (length str)) n) ) )
f\ (defun convert-string-to-real (str &optional (radix 10))
b (+ (float (get-leftside-of-real str radix)) (get-rightside-of-real str radix)) )

(defvar *tcp-handlerl* (send ip::*tcp-handler* :get-port))
(defvar *tcp-handler2* (send ip::*tcp-handler* :get-port))

W
X (defvar *irisl-portl* 1027) i this is the send port
J (defvar *irisl-port2* 1026) ; this is the receive port
"
$ (defvar *irisl-address* 3221866502)
b (defvar *icris2-address* 3221866504)
(defvar *iris3-address* 3221866505)
o (defvar *dest-address* nil) ; the tcp-ip or internet address
: look in network configuration
': (defun iris (x)
. (cond ((equal x ) (setq *dest-address* *irisl-address*))
Dy ((equal x 3) (sety *dest-address* *iris3-address*))
-y (t (setq *dest-address* *iris2-address*)) ) )
K
! (defflavor conversation-with-iris ((talking-port-number *irisl-portl*)
W (listening-port-number *irisl-port2*)
:0 (talking-port *tcp-handierl*)
. (listening-port *tcp-handler2*)
\ (destination *dest-address*) )
Y
1,
¥ 134
K
i

‘ LI IS AP P - LA et T T L r T et Em e T mT e T et Mt el A T RT W T AT AR TR e mT T AT - . s N R % ta Y
'\-'-"-'\"1. T A e e T S AT s L :s__’\'_._f\__._.,-_ .{J,.J_-J P




RTINS

Explorer irisflavor.lisp

()

:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables

(defmethod (conversation-with-iris :start-iris)

)

Q)
(progn
(send talking-port :open
ractive : tcp will begin the procedure to establish
: connection (default vs :passive)
talking-port-number ; port number of destination host
destination : machine name or address if blank and

in ‘passive mode local machine waits for

connection

30 ) . set max seconds before read request times out

(send listening-port :open
ractive
listening-port-number
destination
30 )

;:passive

'"A conversation with the iris machine has been established” ) )

(defmethod (conversation-with-iris :reuse-iris)

O

(setg *tcp-handlerl* (send ip::*tcp-handler* :get-port)
*tcp-handler2* (send ip::*tcp-handler* :get-port)

talking-port *tcp-handlerl*
listening-port *tcp-handler2* ) )

(defmethod (conversation-with-iris :get-iris)

)
(let* ((typebuffer ")
(lengthbuffer " ")

(buffer ")
(buffer-length 1) )
(progn
(send listening-port :receive
typebuffer
buffer-length
30
wait )
(send listening-port :receive
lengthbuffer
4
30
wait )

(setq buffer-length (convert-string-to-integer lengthbuffer))
(setq buffer (make-string buffer-length :initial-element (character 32)))

(send listening-port :receive
buffer
buffer-length
30

wait )

(cond ((equal typebuffer "I") (convert-string-to-integer buffer))
((equal typebuffer "R") (convert-string-to-real buffer))

((equal typebuffer "C") buffer)
(t nil) ) ) ) )

(defmethod (conversation-with-iris :put-iris)
{object)
(let* ((buffer (cond

((equal (type-of object) 'bignum) (convert-number-to-string object))
((equal (type-of object) "fixnum) (convert-number-to-string object))
((equal (type-of object) "float) (convert-number-to-string object))

((equal (type-of object) "string) object)
(t "error") ))
(buffer-length (length buffer))

135

SR TA TS T T O N R e I A
W ARG, AU A SR R

)
L]

",‘.'. » hJ .,-*'f"" "’,"l P { f.'.'
PRRLS ORI EGETE Y S 0 st

[

£, e
o S
s'ein’s

Tl

. |4
\-(ﬁr\‘ T

b

L



R R T NI T R R R R R N A W NO VU USRI RCRA W ~ala'RYe'ats § 2V &'a % 470 9",

N
4
-
)
’
Explorer irisflavor.lisp rol
’
(typebuffer (cond ((equal (type-of object) ’'bignum) "I") : ]
((equal (type-of object) 'fixnum) "I") Wy
((equal (type-of object) "float) "R") -
{(equal (1ype-of object) ’'string) "C") .3
(t "C"y »n »
(lengthbuffer (convert-number-to-string buffer-length)) o~
(*loopvariable* 0) ) Y
(progn N
(send talking-port :send “
typebuffer h
1 ‘q
nil b
nil )
(if (= (length lengthbuffer) 4) -
(send talking-port :send R
lengthbuffer o
4 '_‘
nil 5
nil ) "o
(progn o~

(loopfor *loopvariable* (length lengthbuffer) 4
(send talking-port :send "0" 1 ail nil) )
(send talking-port :send lengthbuffer (length lengthbuffer) nil nil) ) )
(send talking-port :send

IO RGNS

buffer
buffer-length
t
nil ) ) ) )

(defmethod (conversation-with-iris :stop-iris)
)
(progn (send talking-port :close) (send listening-port :close)) )

e
oL

%

“E

N A )
'.. !. " fJ

"¢

PEEEAAA

EISIPAINRL 4
o m NN

P
(o)

-

i B I S
lr'x"lll_"".f‘

“ s “
o d®

136

2

o
r L

5o
R gt )

\'\‘\

R T R B R A N e A A T ARG A LR H AR RO R RS K G SO



P o0g gt e % A et et e 0 Rt et 600 0 a0 i 0V a6 R 0 0 0 g et 08 A% - “
~

‘F‘

’

N

.'-
APPENDIX C - SYMBOLICS MODULE DESCRIPTIONS A
xﬂ

’
All functions, methods, and flavor are contained in file irisflavor.lisp. <A
o8

1. Calling Protocols -
\ *
The module contains functions, methods, and a flavor that are intended for the .
~ )
application’s use. It also contains a macro and functions that are used internally. The -
parameters for externally accessible functions and methods are described below. :::'
a. gselect-host -
(defun select-host (host-name) uﬁf_
.« . .!
b. srart-iris i,
(defmethod (:start-iris conversation-with-iris) "2

O
C. get-iris i
(defmethod (:get-iris conversation-with-iris) )
O
d. put-iris

(defmethod (:put-iris conversation-with-iris)

(object)

(let* ((buffer (cond

((equal (type-of object) 'bignum) (convert-number-to-string object))
((equal (type-of object) 'fixnum) (convert-number-to-string object))
((equal (type-of object) 'single-float) (convert-number-to-string object))

A I N

€.

f.

((equal (type-of object) ’string) object)
(t "error™) ))

Stop-iris

(defmethod (:stop-iris conversation-with-iris)

)

reuse-iris

(defmethod (:reuse-iris conversation-with-iris)

0

137

f'i,"zf'a 'n'c'*‘:xc“ '-(‘:'n':'f.{..f, Va-""_n":“[::-"":-"j"’:-" (o S o

L AR TR . ~
e TS X

Y

R T e

v

'yl

Y
» -
[y

v vy
ClP o o

- ‘-“ : 'Ii-"-l'”?'j ,"‘,

%
s 7

5%



2. Code and Description

ANV WEN Tt N AN N A

S et fad Sol Sob Sl Bl of L Nag Sl N L S Sl Seh

Symbolics irisflavor lisp

-*. Mode: LISP: Syntax: Common-lisp: Package: USER -*-
handy macro to have in the send message farthur down

(defmacro loopfor (var init test expl &optional exp2 exp3 expd exp5)
‘{prog () o

(setq .var ,1intt)

tag
.expl
.exp2
.exp3
.expéd
,exp5
(setq ,var (l+ ,var))
(if (= ,var ,test) (return t) (go tag)) ) )

(defun convert-number-to-string (n)
(princ-to-string n) )

(defun convert-string-to-integer (str &optional (radix 10))
(do ((j O (+ j L))
(n 0 (+ (* n radix) (digit-char-p (char str j) radix))) )
((= j (length str)) n) ) )

(defun find-period-index (str)
(catch ‘exit
(dotimes (x (length str) nil)
(if (equal (char str x) (char "." 0))
(throw ‘exit x) ) ) ) )

(defun get-leftside-of-real (str &optional (radix 10))
tdo  ((j O (1+ j))
(n 0 (+ (* n radix) (digit-char-p (char str j) radix))) ) .
((or (null (digit-char-p (char str j) radix)) (= j (length str))) n) ) )

(defun get-rightside-of-real (str &optional (radix 10))
(do ((index (1+ (find-period-index str)) (l+ index))
(factor 0.10 (* factor 0.10))
(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))) )
((= index (length str)) n) ) )

(defun convert-string-to-real (str foptional (radix 10))
(+ (float (get-leftside-of-real s:r radix)) (get-rightside-of-real str radix)) )

(defvar *iris-portl* 1027) . this is the send port
(defvar *iris-port2* 1026) : this is the receive port
(defvar *tocal-talk-port* 1500) ; this is the local send port
(defvar *local-listen-port* 1501) . this is the local receive port
{defflavor conversation-with-iris ((talking-port-number *iris-portl*)
(tistening-port-number *iris-portl*)
(local-talk-port-number *local-talk-port*)

(local-listen-port-number *local-listen-port*)
(talking-stream)
(listening-stream)
{destination-host-object) )
)

:initable-instance-vartables )

(defmethod (:intt-destination-host conversation-with-iris)
(name -of -host)
(setf destination-host-object (net:parse-host name-of-host)) )

138

2

L

{
o e S N e Y A NN




-

’

3

'

i I ey - - - LN
M A A AT AT AT N AT N

)

Symbolics irisflavor.lisp

(defmethod (:start-iris conversation-with-iris)
O)
(setf talking-stream
(tcp:open-tcp-styeam destination-host-object
talking-port-number
local-talk-port-number ) )
(setf listening-stream
(tcp:open-tcp-stream destination-host-object
listening-port-number
local-listen-port-number ) )
"A conversation with the iris machine has been established” )

(defmethod (:reuse-iris conversation-with-iris)
)
)

(defun read-string (stream num-chars)
(let ((out-string ""))
{dotimes (i num-chars)
(setf out-string (string-append out-string (read-char stream))) )
out-string ) )

(defmethod (:get-iris conversation-with-iris)

()
(let* ((typebuffer "y

(lengthbuffer " ")
(buffer ")
(buffer-length 1) )
(progn

(setf typebuffer
(read-string listening-stream 1) )
(setf lengthbuffer
{(read-string listening-stream 4) )
(setf buffer-length
(convert-string-to-integer lengthbuffer) )
(setf buffer
(read-string listening-stream buffer-length) )

(cond ((equal typebuffer "I") (convert-string-to-integer buffer))
({equal typebuffer "R") (convert-string-to-real buffer))
((equal typebuffer "C") buffer)

(t nil) ) ) ) )

(defvar *step-var* 0)

(defun my-write-string(string stream)
{let* ((num-chars (length string)))
(dotimes (i num-chars)
(write-char (aref string i) stream) ) ) )

(defmethod (:put-iris conversation-with-iris)
(object)
(let* ((buffer (cond

-
®

v v E mv
St

AN

‘;;:g'.\"\,'; s A ’

oy

__(
-

Py

. .‘._.
Yodkhd '.'5.-\."'2 )

v" I~I

L
s

- @

({equal (type-of object) 'bignum) (convert-number-to-string object))
({equal (type-of object) 'fixnum) (convert-number-to-string object))
((equal (type-of object) ‘single-float) (convert-number-to-string object))

((equal (type-of object) "string) object)
(t "error™) ))

(buffer-length (length buffer))

(typebuffer (cond ((equal (type-of object) 'bignum) "1")
((equal (type-of object) 'fixnum) "I")
{(equal (type-of object) 'singlz-float) "R")
((equal (type-of object) 'string) "C")
(v "C"y »

(lengthbuffer (convert-number-to-string buffer-length)) )

139

.o

.’.I




TITL W W W U W W WA R G W W0t o G I N O TOE P Mk KM ™ Wl ™ ™ ™y AW ™ W P dal tap o L . A b DT,

Symbolics irisflavor.lisp

(progn
(my-write-string typebuffer talking-stream)
(send talking-stream :force-output)
(if (= (length lengthbuffer) 4)
(write-string lengthbuffer talking-stream)
(progn
(loopfor *step-var* (length lengthbuffer) 4
(write-string "0" talking-stream) )

B At

LN eSO P LS

LS

(my-write-string lengthbuffer talking-stream) ) )
(send talking-stream :force-output)
(my-write-string buffer talk.ag-stream)
(send talking-stream :force-output) ) ) )

27
-<"',

(defmethod (:stop-iris conversation-with-iris)
() .

(progn (send talking-stream :close) h
(send listening-stream :close) ) ) N

- ey
P
v

N

(defun select-host (host-name) <Y
(send talk :init-destination-host host-name) )

P '2(5'4’1‘.
S Ao N A

ok J

v u_ 8 _»
'
LN

Rl oy
ACNA
2

¢,

P

'y
B,

2
SN
*D
20
o
. .\
LY

140

) ;f‘r'f'{;fxa\f{giw\

R R T o e e R G i




v » - L] \J - » 4
~.'U.D‘G'D‘. (AN ‘ \J () i _fat (" v \J J u."! .l * "v ‘alt‘ ‘_ _- O .‘,-- b_ n* __ & !b|b|

i
»
hy
“
pN
\
APPENDIX A - TEST AND UTILITY PROGRAMS N
4
1. gprog.c f
a. Calling Protocols }','.
'-f'
This is a test program for the direct connect protocol. By command line 3
argument, another machine to receive direct connect messages from can be specified. -;
The default is to receive messages from iris2. It must be run in conjunction with L;:'f
.}\‘
gprog2.c to function properly, as the port assignments are hardcoded. Since it is the )
)
server program, it must be started before gprog2.c. ':
X
-. )
b. Code and Description Ty
W
/* this is file gprog.c ]
2
It is a sample top level program for the asynchronous reading ]
and writing of sockets via shared memory and two other processes. N
This program spawns off the required processes. ::
This program uses structure type Machine declared in file shared.h. ;-..
N
This is the SERVER side program and runs first!!!. N
. , )
y 5
#include "shared.h" ,-'
#include "gl.h" >

#include "device.h"

y

e
main(argc,argv) b
int argc;: /* argument count */ (l':
char *argv([]; /* pointers to the passed in arguments */ A
{ '4
Machine remotemachine; /* structure for remote machine */ v
char other_machine{50]; /* name of other machine */ (]
char mybuffer|LARGESTREAD] ; /* received data */ §:
: char outgoing[LARGESTREAD} . /* outgoing message’'s buffer */ E
{ int mybuffer! [ LARGESTREAD/INTEGER_SIZE]: /* received integer data */ ,,
int outgoingl [LARGESTREAD/INTEGER_SIZE]; /* outgoing integer message's buffer */ "
float mybuf fer2 [LARGESTREAD/FLOAT _SIZE]: /* received float data */ ,E:\
float outgoing2[LARGESTREAD/FLOAT_SIZE]: /* outgoing float message buffer */ ::
] long noutgoing: /* size of the outgoing message */ .'.:'
D‘ |
141 &
A

..l, -,

A

"

RV L E sy SRS R R R L S )



gprog.c
char temp[10]; /* temp array used to make outgoing message */
long count = 0 /* message counter */
char received_type();
char type_received;
int elements_received;
long i; /* temp loop variable */

long j = 0; /* variable to control message sending */

/* pull out the string from the argument list */

if(arge > 2)

{
printf("GPROG: incorrect argument count! use gprog <alias>\n"):
exit(l):

/* pull out the name of the other string, if it exists */
if( arge == 2 )
{

strcpy( other_machine, "npscs-" );
strcat( other_machine, argv[l] );

J

else
strcpy( other_machine, "npscs-irisl” ):

/* create a path to a particular machine (irisl default) */
/* the first argument is the key for the shared memory segment.
the second argument is the name of the machine to connect to.
the third argument is the sending port number for the socket to use.
the fourth argument is the receiving port number for the socket to use.
the fifth argument indicates whether the processes should
act as a server or a client.
the sixth argument is the returned pointer to the structure
remotemachine.
it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.
the seventh argument is the amount of freespace desired for dynamic
memory allocation during execution of the program. :
”

dynamicmachinepath(l,other_machine,l,2,"server" &remotemachine,b 2000000):
/* the loop for polling the shared segment */

while(TRUE)

{

/* make an outgoing message */

strcpy(outgoing, "GPROG ORIGINATED MESSAGE: ");
count = count - 1:

outgoingl[0] = count;

noutgoing = strlen(outgoing);

outgoing2[0] = count;

/* is there data in the shared segment? */

if(receiver_has_data(&remotemachine))

{

type_received = received_type(&remotemachine);

142

". Cal {P LA Y

-

RO P
‘a2

lj‘ﬂ:" "’ -,

[/
2,

pr

."5

k4

L
2,7

<

n:jﬁﬁf
-

‘0

-

@2

o)

r._'l' v :'- ;

e -'\-"_ -‘\-

-~ PP R P A P - A e T e e At A A AR TR T e e . o o
e N o o T A R B R o e e e T i T S oA



PRI alat, 4 b ek Gl ah ek e o - - " aieh e i v AN, =~ S O < Lt v B0 S Pl -
b Bt A L At AT A S A B GR AR G n el LG E SRR A ERA AU, LALLM AR 2 oAU S LA CLC AR A S, L OGN

&

gprog.c

printf("The message received by GPROG is of type %c \n",
type_received):

-

o %y
P o] A

switch (type_received)

{
. case CHARACTER_ARRAY TYPE: )

oy

elements_received = number_received(&remotemachine);: : :
[ "K
printf("The message received by GPROG is %d elements long!\n", ':e
elements_received); .:“
\
read_characters(&remotemachine, mybuffer, elements_received):
break; .
case INTEGER_TYPE: oy
read_integer(&remotemachine ,mybufferl); :*.
break; _,_.x
W
case FLOAT TYPE: g_l‘:'
read_float(&remotemachine ,mybuffer2);
break; S‘
'
/* at this poin: in the program, process the received data...*/
printf("GPROG has received the fo?lowing data:\n"): :}
¥
switch (type_received) ~,:'
| [RAN
case (HARACTER_ARRAY_TYPE: ®
for(i=0; i < elements_received; i+=1)
)
printf("%c" ,mybuffer[i]); .,:.:
break; e
e
case INTEGER_TYPE: 4
. printf("%d" ,mybufferl(0]); »
break; e
v,
case FLOAT_TYPE: -
printf("%f" mybuffer2[0]); o
break; L
] e
printf("\n"); “d
] ®
~x
/* at this point, we would look at our system and see if we needed o
to send data. Instead, I will check if the sender is free. :;-.
If the sender is free, I will send one of three messages */ e
if(sender_is_free(&remotemachine)) A
if((j % 3) == 0) “n
write_characters(&remotemachine, outgoing,noutgoing): ®
/* wait until message sent before attempting to send another */ ::‘:
while( !sender_is_free(&remotemachine) ) /* do nothing */ ,\n::
if((j % 3) == 1) =3
write_integer(&remotemachine,outgoingl): o
..\"-
/* wait until message sent before attempting to send another */ ®
while( !sender_is_free(&remotemachine) ) /* do nothing */ )
KLY
if((j % 3) == 2) ‘,,:
write_float(&remotemachine ,outgoing2); :.'\
RS
++j o
' h.‘.‘-
else ®
S
N

s

143

_. P
&’5{'. bl {.'& <’

I's

I AN A A A ‘ . > CIC I, R O I S I N A O N



RO EL T AN T AN R L O P g h g s

gprog.c

/* assume socket connection broken */
printf("Sender wasn't free! Termminating...\n");
break:

} /* endif while TRUE */

/* get rid of the path to the other machine...*/
defetemachinepath(&remotemachine);

ML RXLS

A

ranl
4

s

Vg

.. .‘;,. ~

P AR
PRSI

144

. P B R - - e w - 4
WIINCACRINAS S s I s U P IS VAT W RO LAP AT AT MR N




2

o,

W

PO O

fffl"'{"

n>

»

TR TRy

B Ty o T T A L S £ N S S A R AN R R RSy

2. gprog2.c

a. Calling Protocols

This is a test program for the direct connect protocol. By command line
argument, another machine to receive direct connect messages from can be specified.
The default is to receive messages from iris/. It must be run in conjunction with
gprog.c to function properly, as the port assignments are hardcoded. Since it is the
client program, it be started after gprog.c is ready for it.

b. Code and Description

/* this is file gprog2.c

It is a sample top level graphics program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required piocesses.
This program uses structure type Machine declared in file shared.h.
This is the CLIENT side program and runs second!!!.

*/

#include "shared.h”

#define TRUE 1!

main(argc,argv)

int argc; /* argument count */
char *argv(]: /* pointers to the passed in arguments */

{

Machine remotemachine; /* structure for remote machine */

char other_machine[50]; /* name of other machine */

char mybuf fer [LARGESTREAD] ; /* received data */

char outgoing[LARGESTREAD]; /* outgoing message’'s buffer */

int mybufferl[LARGESTREAD/INTEGER_SIZE]: /* reccived integer data */

int outgoingl{LARGESTREAD/INTEGER_SIZE]: /* outgoing integer message's buffer */
float mybuffer2{ LARGESTREAD/FLOAT_SIZE]); /* received float data */

float outgoing2{LARGESTREAD/FLOAT_SIZE]: /* outgoing float message buffer */

long noutgoing: /* size of the outgoing message */
char temp[10]; /* temp array used to make outgoing message */
long count = 0: /* message counter */

char received_type():

145

P

X WM MO M 3 ¥ ¥ .«Q- B gat g g gov * Bp e, W W ‘o, i""‘.'. 8.9 7 ‘t‘i R W) », . Ang iay B LAY

L2 Y e
S

~

NS

agide
i
s

e
e
R r

NS
- bd -,\:1' .A,:l. B

r. L ARSA

.a -
oA L A S

L= o - 5 P <
_Sn_iin_po 04"

P4
s

-"'5 'l S %

DR
S e

2

,.. .
.’s‘e\.‘

AR

v

.l."'l-‘i *,

"-"n'
r
’,!



L R I LR I S I N F o TR TR A S S N S Wl B Sl Pt RS N Sy
S S S S TR S R o S I N ISP DI N NN M N TN

gprog2.c

char type_received;
int elements_received;
long 1i: /* temp loop variable */ ’

long j = 0: /* variable to control message sending */

/* pull out the string from the argument list */
if(arge > 2)
{

printf("GPROG2: incorrect argument count! use gprog2 <alias>\n"):
exit(l);

/* pull out the name of the other string, if it exists */
if( arge == 2 )
{

strcpy( other_machine, "npscs-" );

strcat( other_machine, argv([1l] ):

else
strcpy( other_machine, "npscs iris2" );

/* create a path to a particular machine (iris2 default) */
/* the first argument is the key for the shared memory segment.
the second argument is the name of the machine to connect to.
the third argument is the sending port number for the socket to use.
the fourth argument is the receiving port number for the socket to use.
the fifth argument indicates whether the processes should
act as a server or a client.
the sixth argument is the returned pointer to the structure
remotemachine.
it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.
*

machinepath(l,other_machine,2,1,"client"” &remotemachine);
/* the display loop and loop for polling the shared segment */

whi le (TRUE)
(

/* make an outgoing message */
strcpy(outgoing,"IRIS1 ORIGINATED MESSAGE: ");
count = count + 1;

outgoingl[O0] = count;

noutgoing = strlen(outgoing):

outgoing2(0] = count;

/* is there data in the shared segment? */

if(receiver_has_data(&remotemachine))

{ 24

type_received = received_type(&remotemachine); :
printf("The message received by IRIS1 is of type %c \n", !
type_received): o7
switch (type_received) ;*
{ bty
case CHARACTER_ARRAY_TYPE: R
elements_received = number_received(&remotemachine); i‘

»

™

fn

146 ¢

o

e,

r

R4

Y .
,‘.”{ .;-'i




PRI W K R X

3]

‘A,

aj

O R 9 o it i T L O R O R R T o o o O ooy

gprog2.c

printf("The message received by IRISI is %d elements long!\n",

elements_received):

read_characters(&remotemachine mybuffer,
elements_received):
break:

case INTEGER_TYPE:
read_integer(&remotemachine mybufferl);
break;

case FLOAT TYPE:
read_float(&remotemachine mybuffer2);
break;

/* at this point in the program, process the received data...*/
printf("IRIS! has received the following data:\n");

switch (type_received)

{
case CHARACTER_ARRAY_TYPE:
for(i=0; i < elements_received; i+=1)
{
printf("%c" ,mybuffer[i]);
]
break;
case INTEGER_TYPE:
printf("%d" ,mybuffer1[0]);
break;
case FLOAT_TYPE:
printf("%f" ,mybuffer2{0]):
break;
)

printf("\n");
)

/* at this point, we would look at our system and sec if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */
if(sender_is_free(&remotemachine))

(
if((j %3) ==0)
write_characters(&remotemachine,outgoing.noutgoing):

/* wait until message sent before attempting to send another */
while( !sender_is_free(&remotemachine) ) /* do nothing */ printf("2"):

if((j) % 3) == 1)
write_integer(&remotemachine,outgoingl);

/* wait until message sent before attempting to send another */
while( !sender_is_free(&remotemachine) ) /* do nothing */ printf("3")

if((j] % 3) == 2)
write_float(&remotemachine outgoing2):

++j) .
}
else
{
/* assume socket connection broken */
print{("Sender wasn't free! Terminating...\n"):
break:
]
147
L]

TG I TRl R T T N P o e ety

»

oS

- A
o I K

e

.
-

ot P

.—.,

A

)

NN A™

4-.:r P {1.{4' “-4‘

%

, .‘.‘;."'h. --‘-'&-'. -



R A AR A N ANV VNI X PO O T o "0 o A R R P WV N W T VL N T N FU NP TR AR A N R N - MR ANNVNLY Y

13
.“- -!

“»
a
LR

gprogl.c

/* at this point, you can do the rest of the display loop */

2@

RS

} /* endif while TRUE */

13

/* get rid of the path to the other machine...*/
deletemachinepath(&remotemachine):

.»
s

T L WL
t’_#‘-}“
ST

ataTe a8
o v_‘: '..\‘-

e
LA

-

."(‘v [ ]
g

s

A} @
cEe i

A
S
Ll A

T Y b -
NI 23 N

E

Sl

by T Tie 2 e J
Dy .-"'.14

T
Jq  Fa

LN

"-,.".. vlia

oy
KPP 'j".

»
y

7

72

148

® L

X
3
:u-
>
<
-{- '_J‘".".’_'I.'-"I"-"-"J“-"-f'-"J"{ .’...-J-"_‘.’..iq’_.—'--’-{-{-f- N LR A T N 'J"('.-'.-')"-‘ ““‘\'-..\‘.‘\ s . W \\
. ¥y, W Py, Rallal M gt N I, M oy 1.7 . W% W 1N A 0%, R T W 9N h R " Ny A



RO N KU N W NS WA Calgtalyt iat f v byt Qb Gt 00 T 0 gar-gab g AR M T A R RN RR

"t

!
{
B
1

W=

prog.c

a. Calling Protocols

This is a test program for the broadcast protocol. By command line argument,

another machine to receive broadcast messages from can be specified. The default is to

e o I R SR

receive messages from iris2. It must be run in conjunction with prog2.c to function

L

properly, as the port assignments are hardcoded.

b. Code and Description

(ISR SR

/* this is file prog.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

-

This program spawns off the required processes.
This program uses structure type Machine declared in file shared.h.
«;
#include "shared.h"”
#define TRUE 1
main(argc,argv)

int argc; /* argument count */
char *argv[]: /* pointers to the passed in arguments */

{

Machine remotemachinel; /* first structure for remote machine */
Machine remotemachine2; /* second structure for remote machine */

char other_machine[50]; /* name of other machine */

char mybuf fer [ LARGESTREAD] : /* received data */

char outgoing{LARGESTREAD]; /* outgoing message's buffer */

int mybufferl[LARGESTREAD/INTEGER_SIZE]: /* received integer data */

int outgoingl [LARGESTREAD/INTEGER_SIZE]: /* outgoing integer message's buffer */
float mybuffer2 [ LARGESTREAD/FLOAT_SIZE]: /* received float data */

Pt A

float outgoing2[LARGESTREAD/FLOAT_SIZE]; /* outgoing float message buffer */

»
5.

long noutgoing: /* size of the outgoing message */

22

char temp{10]; /* temp array used to make outgoing message */
long count = 0: /* message counter */
char received_type():

char type_received:

-
”
r

\'J'

P t s T N R Do R L Do S T
" N 3 M5 a0 o o X, . ™ a ey

N N



"W B e TR R W AR

v Y v Ny WY

VYN RO ¥ ¥ Yl T K LRV Vv T R K

v

prog.c
int elements_received:
long i: /* temp loop variable */
long j = 0: /* variable to control message sending */

/* pull out the string from the argument list */

if(arge > 2)

{
printf("PROG: incorrect argument count! wuse prog <alias>\n"):
exit(l);

/* pull out the name of the other string, if it exists */
if( arge ==
{

strepy( other_machine, argv[1] );

else
strcpy( other_machine, "npscs-iris2" );

/* create a pair of paths to a particular machine (iris2 default) */
/* the first argument is the maximum number of channels to be created.
the second argument is the key for the shared memory segment.
the third argument is the name of the machiue to connect to.
the fourth argument is the sending port number for the socket to use.
the fifth argument is the receiving port number for the socket to use.
the sixth argument indicates whether the processes should
act as a receiver or a broadcaster.
the seventh argument is the returned pointer to the structure
remotemachinel or remotemachine2.
it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.
*/

dynamicmachinepaths(2,1 other_machine 2,1 "receive"” &remotemachinel);
sleep(5): /* to let both sides set up receiving channels first */
dynamicmachinepaths(2,1,o0ther_machine,4,3,"broadcast” ,&remotemachine2):
/* the loop for polling the shared segment limited to avoid send buffer
overflow */
while(TRUE)
{
/* make an outgoing message */
strcpy(outgoing, "PROG ORIGINATED MESSAGE: ")
count = count + 1;
outgoingl[0] = count;
noutgoing = strlen(outgoing);
outgoing2(0] = count;
/* is there data in the shared segment? */
if(receiver_has_data(&remotemachinel))
{

type_received = received_type(&remotemachinel);

printf("The message received by PROG is of type %c \n"
type_received):

switch (type_received)

150

..,f;\'l.‘\-

IR
3\

-

- -".

e B 2 ity

[
ot A
-

L L o LS

2%’

> -ty
2T e

¥ 1
A

vy

AL S

v

« x

AR

¥

"(EII\I:J: -

\E\t\lmx \:x: ‘.r NP IR A -(.\_-A.j-.-_,.‘

Ay




prog.c

case CHARACTER_ARRAY_TYPE:
elements_received = number_received(&remotemachinel);

printf("The message received by PROG is %d elements long!\n”

elements_received):

read_characters(&remotemachinel .mybuffer,
elements_received);
break:

case INTEGER_TYPE:
read_integer(&remotemachinel mybufferl);
break;

case FLOAT_TYPE:
read_float(&remotemachinel mybuffer2);
break:

/* at this point in the program, process the received data...*/
printf("PROG has received the following data:\n");

switch (type_received)
case CHARACTER_ARRAY TYPE:

for(i=0; i < elements_received: i+=1)

{

]
break;

printf("%c” mybuffer{i});

case INTEGER_TYPE:
printf("%d" ,mybufferl1[0]);
break:

case FLOAT_TYPE:
printf("%f"” .mybuffer2{0]);
break;

printf("\n"):
)

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, 1 will send one of three messages */
if(sender_is_free(&remotemachinel))

{
if((j % 3) == 0)
write_characters(&remotemachine? outgoing,noutgoing);

/* wait until message sent before attempting to send another */
while( !sender_is_free(&remotemachine2) ) /* do nothing printf("2")*/

if((j % 3) == 1)
write_integer(&remotemachine2,outgoingl);

/* wait until message sent before attempting to send another */
while( !sender_is_free(&remotemachine2) ) /* do nothing printf("3")*/

()] % 3) == 2)
write_float(&remotemachine2 outgoing2):

/* wait until message sent before continuing */
while( !sender_is_free(&remotemachinel) ) /* do nothing printf("47)*/

++j
}

else

R -, -‘, -,> "“('i';l’;t‘.} ‘F

Y
Pl

s
-
[,
)
-

b

PRSI RILAN S

Id
)

22

XAy :l' -

s

PAE AR 2 Al
v s

2

AR




X AR

prog.c

o

{
/* assume socket connection broken */
printf(”"Sender wasn't free!\n"):
break:
}

=

/* at this point, you can do the rest of the display foop */

) /* endif while TRUE */

XA A AR Ly

A

/* get rid of the path to the other machine.. . */
deletemachinepath(&remotemachinel):
deletemachinepath(&remotemachinel);

e e s
.
.1'1 ¥

‘F,'.:lsf f. ,' ,‘,.‘T‘

2N T
1’%'7. % S

Phe¥ o

<

¥
£t A

AL NI Tl
P

y %
r

b

o e
‘y
2

-

2 1‘}.'1,{ R

152

-"."'h;- A Y

AL e
3 P /

vy

A I S AE AL RO AN 0 SN O R Py



4. prog2.c

a. Calling Protocols

This is a test program for the broadcast protocol. By command line argument,
another machine to receive broadcast messages from can be specified. The default is to
receive messages from iris/. It must be run in conjunction with prog.c to function
properly, as the port assignments are hardcoded.

b. Code and Description

/* this is file prog2.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared.h.
*/
#include "shared.h"
#define TRUE 1

main(argc,argv)

int argc; /* argument count */

char *argv[]: /* pointers to the passed in arguments */

{ . .
Machine remotemachinel; /* first structure for remote machine */
Machine remotemachine2; /* second structure for remote machine */
char other_machine{50]; /* name of other machine */
char mybuffer[LARGESTREAD] : /* received data */
char outgoing[LARGESTREAD]: /* outgoing message’'s buffer */

int mybuffer ! [LARGESTREAD/INTEGER _SIZE]; /* received integer data */

int outgoingl [LARGESTREAD/INTEGER SIZE]: /* outgoing integer message's buffer */
float mybuffer2{LARGESTREAD/FLOAT_SIZE]: /* received float data */

float outgoing2{LARGESTREAD/FLOAT_SIZE]:. /* outgoing float message buffer */

long noutgoing; /* size of the outgoing message */
char temp(10]: /* temp array used to make outgcing message */
long count = 0: /* message counter */

char r=ceived_type():

char type_received:

153

T AT AT P AT AT et st -"l-.,‘-‘..-‘. YT AN et AN N

‘:D'ﬁ:}!! :::-.:- ..'.‘.‘;

it d e S

*
L

hd

Tl @

P ALY

[

he ]
a

.
1

,',.. e,

VAN

55

Y A N

5

N N

X,

5

o

i
{

.
P

P

v

‘:0 v

)
Ly

,.‘5“‘ ){'l

a0 ';

Ciagha

P XA A

Xy
Ay

A

SRS

A
.

s

)

. = .

hY

, N |

XY,

“,- L - ~n -

.'u- _\'_’ /I

T

P

1.{




O O OO OO0 e O A N SO AN AN A LSOO N DO

)
; prog2.c
g int elements_received;
d long i: /* temp loop variable */
long j = 0: /* variable to control message sending */

/* pull out the string from the argument list */
if(arge > 2)
{

printf("PROG2: incorrect argument count! use gprog2 <alias>\n");
exit(l);

}

/* pull out the name of the other string, if it exists */
if( arge == 2 )

{

strcpy( other_machine, argv[1] ):

else
strcpy( other_machine, "npscs-iris2" );

/* create a path to a particular machine (iris2 default) */
/* the first argument is the maximum number of channels to be created.
the second argument is the key for the shared memory segment.
the third argument is the name of the machine to connect to.
the fourth argument is the sending port number for the socket to use.
the fifth argument is the receiving port number for the socket to use.
the sixth argument indicates whether the processes should
act as a server or a client.
the seventh argument is the returned pointer to the structure
remotemachinel or remotemachine2.
it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.
b */

dynamicmachinepaths(2,1,o0ther_machine,3,4,"receive” &remotemachinel);
3 sleep(5); /* to let both ends of the process get set up */

dynamicmachinepaths(2,1,other_machine,1,2,"broadcast” &remotemachinel);

/* the display loop and loop for polling the shared segment */

while (TRUE)
. (
\ /* make an outgoing message */
Y strcpy(outgoing, "PROG2 ORIGINATED MESSAGE: ");
! count = count + !;

outgoingl[0] = count;

noutgoing = strlen(outgoing):

outgoing2{0] = count;

/* is there data in the shared segment? */
if(receiver_has_data(&remotemachine2))

{

type_received = received_type(&remotemachine2):

printf("The message received by PROG2 is of type %c \n"
type_received);

switch (type_received)

{

154 R,




| ARSIt S it SN e Ut i U U PR B A S S cr t ittt St LA RASYL SRR ROA S HES S M AL AL A A RS

ALY v

prog2.c

case CHARACTER_ARRAY TYPE:
elements_received = number_received(&renotemachine):

printf("The message received by PROG2 is %d elements long!\n",

elements_received):

read_characters(&remotemachine2 mybuffer,
elements_received);
break;

case INTEGER_TYPE:
read_integer(&remotemachine2 mybufferl):
break;

case FLOAT TYPE:
read_float(&remotemachine2 ,mybuffer2):
break:

/* at this point in the program, process the received data...*/
printf("PROG2 has received the following data:\n");

switch (type_received)

{
case CHARACTER_ARRAY_TYPE:
for(i=0; i < elements_received; i+=1)
{
printf("%c” mybuffer[i]):

break;

case INTEGER_TYPE:
printf("%d" ,mybuffer1{0]);
break;

case FLOAT_TYPE:
printf("%f" ,mybuffer2[0]);
break;

printf("\n");
}

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */
if(sender_is_free(&remotemachinel))

{
if((j % 3) == 0)
write_characters(&remotemachinel,outgoing,noutgoing);

/* wait until message sent before attempting to send another */
while( !sender_is_free(&remotemachinel) ) /* do nothing printf("2")*/

if((j % 3) == 1)
write_integer(&remotemachinel,outgoingl);

/* wait until message sent before attempting to send another */
while( !sender_is_free(&remotemachinel) ) /* do nothing printf("3")*/

if((j % 3) == 2)
write_float(&remotemachinel outgoing2):

/* wait until message sent before continuing */
while( !sender_is_free(&remotemachinel) ) /* do nothing printf("4")*/

++j:

]

else

155

8 . te,m S VR S e P e N SRS N S N N L
P I A I S N A P T T N A P A N S N NN o

AT
S

LS

Ty

-~

NN,

NS

N

"'1)'1.?‘.4:.'-

“x '-l.’-

PRy
‘lﬁ'_t_'.L

P d
“l'l

)

LXXAAR

20

Jp?:?-yx

N

NN

,.
NS

_, TY,
.?t“"‘d".k

e T

L4
”

O

«,
5 .l

P4 'l'l‘:'. o,

< j.'-.

r

R B
S H A YN

TR
)

SN B,
Lo =g -



LK AN R AR A WU WL WU WUNL Y g, ¢ da' Satasnvata 02 alt’ 200"

prog2.c

/* assume socket connection broken */

printf(“"Sender wasn't free! Terminating..

break:
}

} /* endif while TRUE */

/* get rid of the path to the other machine..

deletemachinepath(&remotemachine2):
deletemachinepath(&remotemachinel);

156

\n");

i

s

N e L

N )

N~ N e
- A -~

RN

Nl

-~

S

P e

l'
p

KA LS
W I

.I‘U._l..l' 'l,".
e e

T A

»

t

&( ':. 1

{\‘-5'

2

AL P

[
- et
1 W IS ‘. “’
oz ‘x'-.'-' s .

B
-
)
-
.":-\
)




ot e et e e e, G 3§, PAT KA IIAT Sk D8 S D Uad o aRaD Ay ¥y gV 4™ P RIRT R, La® 00" 0 ath AR AN ot AN 0.2 0,0 .0 0.0 1,804 000 Y 3 g ¥

>
20

oz

5. rmshare.c

84
. -
a. Calling Protocols ®
A
This is a stand-alone utility. It will remove all shared memory segments owned Y
-5
by the user. By command line argument, selective segments can be removed. .,oz:
.l
b. Code and Description
/*#.l“******t‘*****‘#***ttt******#*“‘*"‘*#ﬁt#“##ﬁ‘*!l'l***#““*‘*t“*‘*‘*‘#‘* '...:‘
* * e
* TITLE : Inter-Computer Communication Package * ,.'-:
* * ox
* MIDULE : mshare.c * ..:-c
- * .,
* VERSION: 1.0 * ®
® *
. O]
* DATE : 25 February 1988 * gl
* - -"‘
* AUTHOR : Theodore H. Barrow * '
» *
(EA R EE AR RS RS REE LRSS RE R R R R R s bR RS R R RRERE R R R R R R R i s R R i i iR R R R R R R RS R R |.
* *
2)
+ HISTORY: . ®
* * Tt
. VERSION: 1.0 . -]
* * " e
* DATE : 25 February 1988 * ',.i'
* * »
.
. AUTHOR : Theodore H. Barrow . e
* * .
A
v * DESC. : Removes shared memory segments identified on conmand line. - o
] »* +
LA A ESE R R RS E R E R R R R RS AR R RERRESERESAERESE SRS EREREEE AR R R R R R R R ] :‘:.:
* * 4 )
* RECORD OF CHANGES * ._::.
- * o
*Version* Date * Author * * Affected *Reqd* 'ﬁ'
* * Change Description *  Modules *Vers* R
EE AR E R R E R AR RS RS R Rl R s R i s s b R i R AR R R R R AR R R R AR Rt R Rt R R it )
* * * * * * * :
* » L] * - .}\
ﬁt#t**ﬁ*.*ﬁ*ﬁ**“***#‘l#*ﬂl*****#**ﬂl**‘*t*#*#1'##*1'***'l#*#**ﬂl**‘#***‘ﬁ**ﬁ*t‘t***/ o
<
-
-‘:\
LA
wIn
o
o
ey
oY,
\:.-.

e

y;

LR AP PR g
'Il 3 '-"'

1,
o

157

Y - Ay
f’};‘;’;"a"}& o

oy
2t

r v o, - CONC I e o, ey Va W T T Wy Wy T, ¥ ™ T Ty F 0 O SV W " W W VT Wy W W " A K
A N A T N A A A T e A S A S LR A



: #include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#i1nclude <sys/shm.h>
J #include <gl . h>
h
: /* The following defines will have to be modified for different machines
s but one of the underlying shared memory attachment mechanisms should
h work for any system V implementation. */
#define IRIS4D 1
#define IRIS3000 2
#ifdef FLAT
#define MACHINE IRIS4D
_ #else
{ #define MACHINE 1IRIS3000
| #endif
}
extern int errno:
main( argc, argv )
int argce: /* argument count */
) char *argv(]; /* pointers to the passed in arguments */
‘ {
: int first = 1;
g int last = 1000;
1 key_t i:
int shmid;
key_t key;
: static struct shmid_ds buffer;
;
/* set the number of shared memory keys to remove */
if(arge > 1)
{
] for( i=first; i<argc; i++ )
{
key = atoi( argv{i] );
if( (shmid = shmget( key, 0, 0)) == -1 )
{
[ 1f( errno !'= ENOENT )
{
write_error( shmid, key, errno );
)
¥
}
D else
(
tf( shmctl( shmid, IPC_RMID, &buffer == -1 )
(
y write_error( shmid, key, errno ):
|
s eise
} write_done( shmid, key ):
: ] /* if( (shmid = shmget( i, 0, 0 )) == -1 ) */
) /* for */
}
else
{
for( i=first; i<last: ji++ )
{
1 if( (shmid = shmget( i, 0, 0)) == -1 )
¢ {
L if( errno !'= ENOENT )
{
write_error( shmid, i, errno ).
}
158
i
)
)
}
h. \. -,.ﬂ. -. g ‘-‘{u' COTRIR ALY -.'_~,'.-. 7 '_ .’, o .;,-.}.', _..",__. ',. o _-‘J,-._..;,.__'- ',-__. , \_. J. .r.- -

rmshare

#include <errno.h>
#include <sys/sysmacros.h>

e e e

&

.-y g

-
e, .

5T WERLES

o e Rl e e e S L > * 5 N5 T ¥ u
v : iy
gt o 4 LS A e S S Se ta

G- w r

<_<

g

WA ™ T

SEEs  a

‘(.l'

L O T T O~
e e

-
)

T AL,
AL .

Lot

l’- > A A

I
.



..'.‘__ __‘ s .. .\., Ay v A A DA, '.-\‘ e e A e < ooy, 200 6 p 02" T R R gy " g’

L

rmshare g
v N
! Wl

else te

fl »

4

if( shmctl( shmid, IPC_RMID, &buffer ) == -1 ) “.

{ .y
write_error( shmid, i, errno ). .r::'_

) ‘
else ﬁﬁ'
write_done( shmid, i ); ity

} /* if( (shmid = shmget( i, 0, 0 )) == -1 ) */ J‘;
' } /% for %/ W
3

printf( "\nCompleted.\n" ); s

} /* main() */

- .
X

Py

. . % 7
write_error( shmid, key, error ) ®
int shmid; i
key_t key: \5’
int error: Ny

e
o

i

printf( "\nShared Memory ID %d (key %d) caused error %d.",
shmid, key, error );

[
iy

oY,

}  /* write_error() */

|
P

A XA

2
»
o

write_done( shmid, key )
int shmid;
key_t key;

s
- -,

printf( "\nShared Memory ID %d (key %d) removed.", shmid, key );

yl ¥

b

P

} /* write_done() */

RPtng g v o R BRI
S :- (’,:;.‘ ,|. f‘:aA',l, <,
» » _

R

K] @ e

159

BNl PARRN
b T I s
2 P

>~ >

A AL LV AT LT L W ¥




10w e A AR YA L AGCARST Sala et ata kvatve SV e it XN T R RIS W W M w a R T W R AN WU W RN NV

'w da e, W - . W [ [} %s % X (]
)
»
®
"
s,
6. testshare.c o
e,
. o,
a. Calling Protocols »
. o
This is a stand-alone utility. It will print current parameters for all active
i
\
shared memory segments. By command line argument, selective segments can be ) :::.
Ly
printed.
b. Code and Description
"=
/***#‘*t****#*#****t*‘**"****ﬁ#******##*‘**t*##**#*‘****#ﬁ**#t#t'#*itttt**t*t :\'-
* * )
A
* TITLE : Inter-Computer Communication Package * R
*® = Le
* MIULE : testshare.c * q
» * e,
* VERSION: 1.0 * .
* * O
* DATE : 25 February 1988 * 3 :
- * J( :
* AUTHOR : Theodore H. Barrow * '.
* *
LA AR SRR EREEEERAREE RS R R R Rl b R R iR Rt i b E i s R R R R AR R R R R RS R R AR Rt R A R R R R g
* * ':.
* HISTORY: * oS,
. » v
* VERSION: 1.0 * O
* * ~.
» DATE : 25 February 1988 * ol
* * , o
* AUTHOR : Theodore H. Barrow * b
* * -
~
* DESC. : Determines which shmid values are used and what their * N
b parameters are. * . by
- * ,o
e e o e o e e e el e e e e e ol e ol e e ok o o e o o ol e o i o e o e e e sfe o e ol o o o o o o o ok e e O o ol O o o e ok f.?,
* * '\
>
- RECORD OF CHANGES *
» *
*Version* Date * Author * * Affected *Reqd* R
* * Change Description *  Modules *Vers* .‘\vi
AR EE AR EEREE R SRR R R R R R R R R R AR R R A 2R R iR R R R R R R R R R R R R R RS R R R R R R R R ] ,\‘
. " - * * * * o~
* * » »* * ':
"ﬁ**‘*’ﬁﬁ’i‘ﬁ#t‘t"‘.**“‘."*ﬁ*#'*t*‘*'***‘“*‘*‘****’.*‘t***‘*‘**ﬁ"t‘*‘*‘/ '\'\k
L ]
®»
f',.;'
row
2
2

AN

I".

o Yo

AL RA A



P N A N X Cata™ 2% 2"’ B g L I W WSS *algtaliat et lat 0at 4o et Ot B 0 Rt RV Bat Rt h ', O T T W ™ ™

testshare.c

#include <errno.h>
#include <sys/sysmacros.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <gl.h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D 1

#define IRIS3000 2

#ifdef FLAT

#define MACHINE [IRIS4D
#else

#define MACHINE IRIS3000
#endi f

extern int errno;

main( )

{
int first = 1;
int last = 1000:
int i:

int shmid:
for( i=first; i<last; i++ )

if( (shmid = shmget( i, 0, 0)) == -1 )
(

if( errno != ENOENT )

{

write_error( shmid, i, errno );

}
’ }
else
{
if( write_struct( shmid ) == -1 )
write_error( shmid, i, errno );
}/* if( (shmid = shmget( i, 0, 0 )) == -1 ) */
}  /* for */

printf( "\nCompleted.\n" );

] /* main() */

write_error( shmid, key, error )
int shmid;
key_t key:

int error;

{
printf( "\nShared Memory ID %d (key %d) caused error %d.",
shmid, key, error ).

) /* write_error() */
struct shmid_ds *get_struct( shmid )
int shmid;

{
static struct shmid_ds buffer;

if( shmctl( shmid, IPC_STAT, &buffer = -1)

161

A A S g et M B e W o D P M T e, S M I L o o N VLA A

1 d

4("' X
,?:&5 iﬁ?

!
» 0w

x .l' -l‘ .;
e &5y Gy

o

o E ;
-~ ;:E*qz

Y

N
-'.‘S(‘ N

iy

1Y

2

RS

w
L
.
L]

a1
v

a
A

'{"’ﬂ

Lt e

"' L
vl 7l sl

/’
-

[ Sy



testshare.c
{
return{ (struct shmid_ds *)-1 ):
]
else
return( &buffer ).
} /* get_struct() */
write_struct( shmid )
int shmid;
(
struct shmid_ds *buf;
if( (int)(buf = get_struct{ shmid }) == -1 )
return( (int)buf );
printf( "\nShared Memory ID %d has the following structure:",
printf( "\n shm_perm has the following structure:" );
printf( "\n cuid is %d.", buf->shm_perm.cuid );
printf( "\n cgid is %d.", buf->shm_perm.cgid );
printf( "\n uid is %d.", buf->shm_perm.uid );
printf( "\n gid is %d.", buf->shm_perm.gid );
printf( "\n mode is %o." buf->shm_perm.mode );
printf( "\n seq is % , buf->shm_perm.seq );
printf( "\n key is %d ", buf- \shm germ.key )
printt( "\n shm_ segsz is %d or %x. uf->shm_segsz,
printf( "\n shm_reg is a structure 1ncmnpletely defined in region.h!”
printf( "\n shm_lpid is %d.", buf->shm_lpid );
printf( "\n shm_cpid is %d.”, buf->shm_cpid );
printf( "\n shm_nattch is %d.", buf->shm_nattch );
printf( "\n shm_cnattch is %d.", buf->shm_cnattch );
printf( "\n shm_atime is %d.", buf->shm_atime );
printf( "\n shm_dtime is %d.", buf->shm_dtime );
printf( "\n shm_ctime is %d.", buf->shm_segsz ).
return( 0 )

R A e A T R RN D AN SR TN R £ it

} /™ write_struct() */

162

LR IS

buf->shm_segsz

unus.'f:f\ 'm‘:ls‘l\.xns...gu_m -

shmid )

R R T o W ™ W R ™ i R R O S Y T U N L U WY,

)

).

L T S P i

-

o AL

Y, W Ky,

AR

WP g

.

ia

Yy

—

R

"l-'r'
ARy

T e

-’(_'_'..".' A

A

I IR T R S R BT I
et PP "=,
AR ..'t'v"l‘\:-

.
RN
R
.

A I NPT R
y 'f‘"{‘_f N

L4
-

w
25



10.

1.

13.

14.

LIST OF REFERENCES

Zyda, Michael J., and others, ‘‘Flight Simulators for Under $100,000,”” /EEE
Computer Graphics & Applications, v. 8, no. 1, pp. 19-27, January 1988 .

Birrell, Andrew D. and Nelson, Bruce Jay, ‘‘Implementing Remote Procedure
Calls,”” ACM Transactions on Computer Systems, v. 2, no. 1, pp. 39-59, February
1984 .

Cheriton, David R., ‘“The V Distributed System,’’ Communications of the ACM,
v. 31, no. 3, pp. 314-333, March 1988 .

Heam, Donald and Baker, M. Pauline, Computer Graphics, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1986 .

Magnenat-Thalmann, Nadia and Thalmann, Daniel, Computer Animation: Theory
and Practice, Computer Science Workbench, ed. by Tosiyasu L. Kunii, Springer-
Verlag, New York, 1985 .

Shneiderman, Ben, Designing the User Interface: Strategies for Effective Human-
Computer Interaction, pp. 179-223, Addison-Wesley Publishing Company, Menlo
Paik, California, 1987 .

Dolezal, Michael J., A Simulation Study of a Speed Control System for Autonomous
On-Road Operation of Automotive Vehicles, M.S. Thesis, Naval Postgraduate
School, Monterey, California, June 1987 .

Goodpasture, Richard Paul, A Computer Simulation Study of an Expert System for
Walking Machine Motion Planning, M.S. Thesis, Naval Postgraduate School,
Monterey, California, December 1987 .

MacPherson, David L., A Computer Simulation Study of Rule-Based Control of an
Autonomous Underwater Vehicle, M.S. Thesis, Naval Postgraduate School,
Monterey, California, June 1988 .

Oliver, Michael R. and Stahl, David J., Interactive, Networked, Moving Platform
Simulators, M.S. Thesis, Naval Postgraduate School, Monterey, Califomia,
December 1987 .

McConkle, Corinne and Nelson, Andrew H., A Prototvpe Simulation System for
Combat Vehicle Coordination and Motion Visualization, M.S. Thesis, Naval
Postgraduate School, Monterey, California, June 1988 .

Nelson, Andrew H., McGhee, Robert B., and Zyda, Michael 1., Investigation into
the Use of Kyoto Common Lisp For Real-Time Computer Animation, to be
published, Naval Postgraduate School, Monterey, California .

Newell, D. P. Siewiorek, C. G. Bell, and A., Computer Structures: Principles and
Examples. pp. 306-485, McGraw-Hill Book Company, San Francisco, 1982 .

Hoare, C.A.R., ‘*Communicating Sequential Processes.”” Communications of the
ACM, v. 21, no. 8, pp. 666-677, August 1978 .

163

AL

"
o

et
1'.

SN

O,

~ ¥
1&1

DIl
LA
S

~
P4
l\l




'.»‘l.a . LA

15.

16.

17.

18.

19.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Hansen, Per Brinch, ‘‘Disributed Processes: A Concurrent Programming
Concept,”’ Communications of the ACM, v.21, no. 11, pp. 934-941, November
1978 .

Lin, Kwei-Jay and Gannon, John D., *‘Atomic Remote Procedure Call,”" /EEE
Transactions on Software Engineering, v. 11, no. 10, pp. 1126-1135, October
1985 .

Pountain, Dick, A Tutorial Introduction to Occam Programming, INMOS Limited,
March 12, 1986 .

OSU-CISRC-TR-82-1, The Implementation of a Multi-Backend Database System
(MDBS): Part I - Software Engineering Strategies and Efforts Towards a
Prototype MDBS, by Kerr, D. S., and others , The Ohio State University,
Columbus, Ohto, January 1982 .

NPS-52-82-008, The Implementation of a Multi-Backend Database System
(MDBS): Part II - The First Prototype MDBS and the Software Engineering
Experience, by He, X., and others , Naval Postgraduate School, Monterey,
California, July 1982 .

NPS-52-83-003, The Implementation of a Multi-Backend Database System
(MDBS): Part III - The Message-Oriented Version with Concurrency Control and
Secondary-Memory-Based Directory Management, by Boyne, Richard D., and
others , Naval Postgraduate School, Monterey, California, March 1983 .

Leffler, Samuel J.,, and others, ‘‘An Advanced 4.3BSD Interprocess
Communication Tutorial,”” in UNIX Programmer’s Supplementary Documents
Volume 1, PS1:8, Usenix Association, 1986 .

Leffler, Samuel J., Fabry, Robert S., and Joy, William N., ‘A 4.2BSD Interprocess

Communication Primer,”’ in Unix Programmer’s Manual, Draft of August 23,
1986 .

Tuthill, Bill, “‘IPC Facilities in 4.2BSD,”’ Unix Review, v. 3, no. 4, pp. 82-87,
April 1985 .

AT&T, UNIX System V, Streams Programmer Guide, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1987 .

Rochkind, Marc J., Advanced UNIX Programming, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1985 .

Bach, Maurice J., The Design of the Unix Operating System, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1986 .

Texas Instruments Inc., Explorer TCP/IP User's Guide, 2537150-0001 Revision A,
pp. C-1-C-7, Austin, Texas, June 1987 .

Texas Instruments Inc., Explorer TCP/IP User's Guide, 2537150-0001, Austin,
Texas, March 1986 .

LANalyzer EX 500 Series Network Analyzer, Reference Manual, Publication No.
4200068-00 (Rev. B), Excelan, Inc., December 21, 1987 .

164

DU Y P MO T Y,

AT WU LSS P T | . T e g T Ty T ™ L I I P AT PRI N A R A
LA S o A e Ul o s, “> Y ’ '( *"‘R"(*v' ‘. Ot ._. :.!-. n ("J’J. ()3 .-..'4 m- ." !

«««««

XA et

R Al VA

L3
f

..-.. AR

-

e r L, e w
IR

-'{-,) - ‘."71

5N Y Ny

W RS aAS

oL )

« fr 7

e Y

o {:.' ? ’?-.‘: .

AR

B AR

y L

At S AR AT

WHEL,

-

!



»'.‘.l"‘ B Ea 8 mal o G o it l"“' .".I i'.‘.' ) * q, l‘ I" 4 C."" I A -'..‘- -- i 3 I~ .:; -_ -.--‘- ot fat -&):.
%
o
Ry
.n'( N
INITIAL DISTRIBUTION LIST g{’
P )'.‘,
No. Copies ®
o
1. Defense Technical Information System 2 :':.
Cameron Station Y
Alexandria, Virginia 22304-6145 b
e’ 3
2. Director, Information Systems (OP-945) 1 . 1
Office of the Chief of Naval Operations -
Navy Department r»;
Washington, DC 20350-2000 Py
v
3. Commandant of the Marine Corps 1 oy
Code TE 06 ;:r
Headquarters, U.S. Marine Corps ,.:f‘
Washington, DC 20360-0001 gﬁ_
T
4. Library, Code (0142 2 .
Naval Postgraduate School e
Monterey, California 93943-5002 .
>
Bty
5. Chairman, Code 52 2 :'.;fi ‘
. ~ Department of Computer Science ®
Naval Postgraduate School e
Monterey, California 93943-5000 Ny
.\.
6. Superintendent, Naval Postgraduate School 1 _:‘
Computer Technology Programs, Code 37 ":"»
Monterey, California 93943-5000 ®
."‘,_'\
7. Michael J. Zyda, Code 52Zk 2 oy
Department of Computer Science - j
Naval Postgraduate School ¥
Monterey, California 93943 o
8. Robert B. McGhee, Code 52Mz 1 3
Department of Computer Science T
Naval Postgraduate School he
Monterey, California 93943 °
R
NS
,\_\ ‘h\
.'P‘.r]
%
L
5
165 7
. J‘"
RS
R
L.
IS
N

h
~
4

IR s S AR StV AR S R



I VL L 1 S NN ST NOPY VO R RO PO X X WU o Wa u..n'.wn.A._\A.-.u-. AN A AT WS W N “'."'l;':;::
W
B
24
9. John M. Yurchak, Code 52Yu 2 A
Department of Computer Science Fag?!
Naval Postgraduate School Y
Monterey, California 93943 . ’ﬁ
W
10.  Marciano Code 52 1 ';:n,. 1
Department of Computer Science . o .:
Naval Postgraduate School
Monterey, California 93943
3
11. Al Wong Code 52 | 5
Department of Computer Science . )‘
Naval Postgraduate School ._.3'
Monterey, California 93943
e
12.  Captain Andrew H. Nelson 1 ks
1006 Leahy Rd. o
Monterey, California 93940 ?}:. )
5
13.  Major Theodore H. Barrow 5 o
Computer Science School f*
Training and Education Center f-}_,“
Marine Corps Combat Development Center oy
Quantico, VA 22134 "
g
%
&
3
®
N
\;' x
7
&
e
o
o
3
MY
L
l:'-.d
et
.x.I
i
o
L 4
'~
166 : :
&
s




A attn b°e

..

iy & SR A R Y

I

o

s harhy e "l

3
<

P

'J ‘L"hl

' g

bar a_a gt 2

W e,

RIS

oL

-,




